$\newcommand{\bbx}[1]{\,\bbox[15px,border:1px groove armada]{\displaystyle{#1}}\,}
\newcommand{\llaves}[1]{\left\lbrace\,{#1}\,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack}
\newcommand{\dd}{\mathrm{d}}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,}
\newcommand{\ic}{\mathrm{i}}
\newcommand{\mc}[1]{\mathcal{#1}}
\newcommand{\mrm}[1]{\mathrm{#1}}
\newcommand{\pars}[1]{\left(\,{#1}\,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\parcial #3^{#1}}}
\newcommand{\raíz}[2][]{\,\sqrt[#1]{\,{#2}\,}\,}
\newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}}
\newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$
\begin{align}
\lim_{n \to \infty}{\pars{n!}^{1/n} \over n} & =
\lim_{n \to \infty}{\bracks{\root{2\pi}n^{n + 1/2}\expo{-n}}^{1/n} \over n} =
\lim_{n \to \infty}\bracks{{\pars{2\pi}^{1/\pars{2n}}\ n^{1 + 1/\pars{2n}} \over n}\,\expo{-1}}
\\[5mm] & =
\expo{-1}\lim_{n \to \infty}\exp\pars{\ln\pars{n} \over 2n} =
\expo{-1}
\exp\pars{\lim_{n \to \infty}{\ln\pars{1 + 1/n} \over 2}}
= \bbx{\expo{-1}} \approx 0.3679
\end{align}