La palabra "par" se utiliza generalmente para referirse a una desordenada par (es decir, un conjunto de tamaño de dos). Un par es generalmente escrito $\{p_1, p_2\}$ destacar que es un juego (no importa el orden). El contexto sugiere que este es el significado de "par", ya que tanto el pueblo elegido aparecen a ganar el mismo premio.
Si el problema eran tales que dos diferentes premios fueron otorgados, entonces podemos hablar de "pares ordenados". Tales pares ordenados son generalmente escrito $(p_1,p_2)$, que es diferente de $(p_2,p_1)$, tal vez con la convención de que el gran ganador del premio va en la primera ranura, mientras que el pequeño premio, el ganador va en el segundo.
En términos de conjuntos, se podría escribir tu respuesta
$$
\{\{p_i, p_j\} \mid 1 \leq i < j \leq 6\}.
$$
Especificando $i < j$ en el se asegura de que usted no lista, se establece como $\{p_1, p_1\}$ (la misma persona en ganar dos veces) o $\{p_2, p_1\}$ (que ya han sido contados como $\{p_1, p_2\}$).
También valdría la pena señalar que hay $\binom{6}{2} = 15$ de estas parejas, ya que la formación de la lista, es equivalente a encontrar todas las formas de elegir los dos índices de los seis en los que no importa el orden.