$$A=\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{2^n}=\\frac{1}{1}\+\frac{1}{2}\+(\frac{1}{3}+\frac{1}{4})\+(\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8})\+...\+(\frac{1}{2^n+1}+\frac{1}{2^n+2}+...+\frac{1}{2^n+2^n})$$now % ver
$$\frac{1}{1}\+\frac{1}{2}\+(\frac{1}{3}+\frac{1}{4})>(\frac{1}{4}+\frac{1}{4})\+(\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8})>(\frac{1}{8}+\frac{1}{8}+\frac{1}{8}+\frac{1}{8})\+...\+(\frac{1}{2^n+1}+\frac{1}{2^n+2}+...+\frac{1}{2^n+2^n})>(\frac{1}{2^{n+1}}+\frac{1}{2^{n+1}}+....\frac{1}{2^{n+1}})$$so $$A>1+\frac{1}{2}+2\frac{1}{4}+4\frac{1}{8}+...\A>1+(\frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}....)\A>1+\frac{n}{2}$$