La prueba de una Combinación de la fórmula $\displaystyle \binom{n}{k} = \binom{n-1}{k}+\binom{n-1}{k-1}$
$\bf{My Try}$::$\displaystyle{\binom{n-1}{k}+\binom{n-1}{k-1}=}$
$\displaystyle{\frac{\left(n-1\right)!}{k!\left(n-k-1\right)!}+\frac{\left(n-1\right)!}{\left(k-1\right)!\left(n-k\right)!}=}$
$\displaystyle{\frac{\left(n-1\right)!}{k\,\left(k-1\right)!\left(n-k-1\right)!}+\frac{\left(n-1\right)!}{\left(k-1\right)!\left(n-k-1\right)!\,\left(n-k\right)}}=$
$\displaystyle \frac{(n-1)!}{(k-1)!\cdot (n-k-1)!}\left(\frac{1}{k}+\frac{1}{n-k}\right) = \binom{n}{k}$
Mi Pregunta es Cómo puedo probar el uso de combinacional argumento
Ayuda Requerida
Gracias