Calcular el $\sum_{k=2}^{\infty}\frac{3}{5^{k-1}}$
\begin{align}\sum_{k=2}^{\infty}\frac{3}{5^{k-1}}&=3\sum_{k=2}^{\infty}\frac{1}{5^{k-1}}\\&=3\sum_{k=2}^{\infty}\frac{1}{5^{k}}\cdot\frac{1}{5^{-1}}\\&=3\sum_{k=2}^{\infty}\left( \frac{1}{5} \right )^{k}\cdot5\\&= 15\left( \sum_{k=0}^{\infty}\left( \frac{1}{5} \right )^{k}-2 \right )\\&=15\left( \frac{1}{1-\frac{1}{5}}-2 \right )\\&=-\frac{45}{4}\end{align}
Hice correctamente?