Aquí hay otra manera: $u(z) = \operatorname{re} f(z) = {1 \over 2} (f(z)+ \overline{f(z)})$, $v(z) = \operatorname{im} f(z) = {1 \over 2i} (f(z)- \overline{f(z)})$.
En este caso, tenemos (también el uso de $w \bar{w} = |w|^2$.)
\begin{eqnarray}
u(z) &=& {1 \over 2} ({1 \over (1-z)^2}+{1 \over (1-\bar{z})^2}) \\
&=& {1 \over 2} {(1-\bar{z})^2 + (1-z)^2 \over |1-z|^4 }\\
&=& {1 \over 2} {2 - 2 (z + \bar{z}) + z^2 + \bar{z}^2 \over |1-z|^4 } \\
&=& {1 \over 2} {2 - 2 \cdot 2 \operatorname{re}(z) + 2 \operatorname{re}(z^2) \over |1-z|^4 } \\
&=& { 1 - 2x +x^2-y^2\over ((1-x)^2+y^2)^2}
\end{eqnarray}
De forma similar:
\begin{eqnarray}
v(z) &=& {1 \over 2i} ({1 \over (1-z)^2}-{1 \over (1-\bar{z})^2}) \\
&=& {1 \over 2i} {(1-\bar{z})^2 - (1-z)^2 \over |1-z|^4 }\\
&=& {1 \over 2i} {2 (z - \bar{z}) + \bar{z}^2 - z^2 \over |1-z|^4 } \\
&=& {1 \over 2i} {2 \cdot 2i \operatorname{im}(z) - 2 i \operatorname{im}(z^2) \over |1-z|^4 } \\
&=& { 2y - 2xy\over ((1-x)^2+y^2)^2}
\end{eqnarray}