5 votos

Hemos podido resolver algunas materias complejas.

Si he a $x_1 + x_2 + x_3 =10$ $1\leq x_1 \leq 5, \; 2 \leq x_2 \leq 6, \;3 \leq x_3 \leq 9$

Sé que puedo calcular $(t^1+\dots + t^5)(t^2 +\dots + t^6)(t^3+\dots +t^9)$ y mirar el coeficiente de $t^{10}$ a encontrar el número de enteros soluciones.

Pero a continuación he a $3a_2,5a_3$

Decir que he a$a_1+3a_2+5a_3=33$$1\leq a_1 \leq 11,\;3\leq a_2 \leq 18,\; 5 \leq a_3 \leq 13$.

Puedo simplemente cambiar a $9 \leq 3a_2 \leq 54$ etc

y calcular el $(t^1+t^2+\dots +t^{10}+ t^{11})(t^9+t^{12}+\dots +t^{51}+t^{54})(t^{25}+t^{30}+\dots +t^{60}+t^{65})$ y mira coeficiente de $33$?

Significado hago recuento de los exponentes en el aumento de la tasa?

-1voto

vonbrand Puntos 15673

Buscas ($\dotsb$ al final de un factor abarca términos que no afectan el resultado):

$\begin{align} [z^{10}] (z + \dotsb + z^5) &(z^2 + \dotsb + z^6) (z^3 + \dotsb + z^9) \\ &= [z^{10 - 1 - 2 - 3}] (1 + \dotsb + z^4) (1 + \dotsb + z^4) (1 + \dotsb + z^6) \\ &= [z^6] \frac{(1 - z^5)^2 (1 - z^7)}{(1 - z)^3} \\ &= [z^6] (1 - 2 z^5 - \dotsb) \sum_{k \ge 0} (-1)^k \binom{-3}{k} z^k \\ &= [z^6] (1 - 2 z^5) \sum_{k \ge 0} \binom{k + 3 - 1}{3 - 1} z^k \\ &= \binom{6 + 2}{2} - 2 \binom{6 - 5 + 2}{2} \\ &= 22 \end{align}$

i-Ciencias.com

I-Ciencias es una comunidad de estudiantes y amantes de la ciencia en la que puedes resolver tus problemas y dudas.
Puedes consultar las preguntas de otros usuarios, hacer tus propias preguntas o resolver las de los demás.

Powered by:

X