El que es mayor entre $$\sqrt[8]{8!}$$ and $$\sqrt[9]{9!}$$?
Quiero saber si mi prueba es correcta...
\begin{align} \sqrt[8]{8!} &< \sqrt[9]{9!} \\ (8!)^{(1/8)} &< (9!)^{(1/9)} \\ (8!)^{(1/8)} - (9!)^{(1/9)} &< 0 \\ (8!)^{(9/72)} - (9!)^{8/72} &< 0 \\ (9!)^{8/72} \left(\left( \frac{8!}{9!} \right)^{(1/72)} - 1\right) &< 0 \\ \left(\frac{8!}{9!}\right)^{(1/72)} - 1 &< 0 \\ \left(\frac{8!}{9!}\right)^{(1/72)} &< 1 \\ \left(\left(\frac{8!}{9!}\right)^{(1/72)}\right)^{72} &< 1^{72} \\ \frac{8!}{9!} < 1 \\ \frac{1}{9} < 1 \\ \end{align}
si no es correcta ¿cómo sería?