Considere el polinomio $$ X^3-3X+1$$
Si $\alpha$ es una raíz $$\alpha^3-3 \alpha+1=0 $$
mostrando $\alpha^2-2$ es también una raíz
set $X=\alpha^2-2$
$$ (\alpha^2-2)^3-(\alpha^2-2)+1=\alpha^6-9\alpha^4+26 \alpha^2-24$$
Veamos $\alpha^6$
$$\begin{aligned} \alpha^6&= \alpha^3 \alpha^3 \\&=(3\alpha-1) (3\alpha-1) \\&= 3\alpha(3\alpha-1)-1(3\alpha-1) \\&= 9\alpha^2-3\alpha-3\alpha+1 \\&=9 \alpha^2 -6 \alpha+1 \end{aligned} $$
Ahora en cuanto al $\alpha^4$
$$ \begin{aligned} \alpha^4= \alpha^3 \alpha^1 &=(3\alpha-1) \alpha &=3 \alpha^2-\alpha \end{aligned} $$
Volvamos
$$ \begin{aligned} &\alpha^6-9\alpha^4+26 \alpha^2 -24 \\ &=( 9 \alpha^2-6 \alpha+1 ) -9(3\alpha^2-\alpha) +26 \alpha^2 -24 \\ &=9\alpha^2-6\alpha+1-27\alpha^2+9 \alpha+26 \alpha^2 -24 \\&=18 \alpha^2 + 3\alpha -23 \\& = \vdots? \\&=0 \end{aligned}$$