Por un razonamiento similar a (a) podemos simplificar el problema:
\begin{eqnarray*}
x_1+x_2+x_3+x_4 &=& 9 \qquad\qquad\text{(*)} \\
\text{with } && 0 \leq x_1 \leq 2 \\
&& 0 \leq x_2 \\
&& 0 \leq x_3 \leq 2 \\
&& 0 \leq x_4 \leq 4.
\end{eqnarray*}
Definir conjuntos
\begin{eqnarray*}
S\;\, &=& \{\text{all solutions to (*) without upper bounds on the %#%#%}\} \\
S_1 &=& \{\text{all solutions in %#%#% where %#%#%}\} \\
S_2 &=& \{\text{all solutions in %#%#% where %#%#%}\} \\
S_3 &=& \{\text{all solutions in %#%#% where %#%#%}\} \\
\end{eqnarray*}
Por el mismo método utilizado en (a) calculamos:
\begin{eqnarray*}
|S| &=& \binom{9+4-1}{9} = \binom{12}{9} \\
|S_1| = |S_2| &=& \binom{6+4-1}{6} = \binom{9}{6} \\
|S_3| &=& \binom{4+4-1}{4} = \binom{7}{4} \\
|S_1 \cap S_2| &=& \binom{3+4-1}{3} = \binom{6}{3} \\
|S_1 \cap S_3| = |S_2 \cap S_3| &=& \binom{1+4-1}{1} = \binom{4}{1} \\
|S_1 \cap S_2 \cap S_3| &=& 0.
\end{eqnarray*}
Entonces requerimos, donde el conjunto complemento es con respecto a $x_i$,
\begin{eqnarray*}
\text{Ans.} &=& |S_1^c \cap S_2^c \cap S_3^c| \\
&=& |S| - |S_1 \cup S_2 \cup S_3| \qquad\qquad\text{by de Morgan's Law} \\
&=& |S| - (|S_1| + |S_2| + |S_3|) + (|S_1 \cap S_2| + |S_1 \cap S_3| + |S_2 \cap S_3|) - |S_1 \cap S_2 \cap S_3| \\
&&\qquad\qquad\qquad\qquad\qquad\qquad\qquad\text{by the Inclusion-Exclusion Principle} \\
&=& \binom{12}{9} - 2\binom{9}{6} - \binom{7}{4} + \binom{6}{3} + 2\binom{4}{1} - 0 \\
&=& 220 - 168 - 35 + 20 + 8 \\
&=& 45.
\end{eqnarray*}