Pregunta: Demostrar $\frac{\sec(x) - \csc(x)}{\tan(x) - \cot(x)}$ $=$ $\frac{\tan(x) + \cot(x)}{\sec(x) + \csc(x)}$
Mi intento:
$$\frac{\sec(x) - \csc(x)}{\tan(x) - \cot(x)}$$
$$ \frac{\frac {1}{\cos(x)} - \frac{1}{\sin(x)}}{\frac{\sin(x)}{\cos(x)} - \frac{\cos(x)}{\sin(x)}} $$
$$ \frac{\sin(x)-\cos(x)}{\sin^2(x)-\cos^2(x)}$$
$$ \frac{(\sin(x)-\cos(x))}{(\sin(x)-\cos(x))(\sin(x)+\cos(x))} $$
$$ \frac{1}{\sin(x)+\cos(x)} $$
Ahora esto es donde estoy atascado , pensé en multiplicar el numerador y el denominador por $$ \frac{\frac{\sin(x)}{\cos(x)} + \frac{\cos(x)}{\sin(x)}}{\frac{\sin(x)}{\cos(x)} + \frac{\cos(x)}{\sin(x)}} $$, pero que no funciona bien..