Evaluar: $$\int^{\frac{\pi}{2}}_0 \frac{\cos^2x\,dx}{\cos^2x+4\sin^2x}$$
Primera aproximación :
$$\int^{\frac{\pi}{2}}_0 \frac{\cos^2x\,dx}{\cos^2x+4(1-\cos^2x)}$$
$$=\int^{\frac{\pi}{2}}_0 \frac{\cos^2xdx}{4 - 3\cos^2x}$$
$$=\int^{\frac{\pi}{2}}_0 \frac{1}{3}\{\frac{4-3\cos^2x-4}{4 - 3\cos^2x}\}\,dx$$
$$=\int^{\frac{\pi}{2}}_0 \frac{1}{3}\{ 1- \frac{4}{4 - 3\cos^2x}\}\,dx$$
$$=\int^{\frac{\pi}{2}}_0 \frac{1}{3} 1\,dx- \int^{\frac{\pi}{2}}_0 \frac{1}{3} \frac{4\sec^2x}{4\sec^2x - 3}\,dx$$
$$=\int^{\frac{\pi}{2}}_0 \frac{1}{3} 1\,dx \int^{\frac{\pi}{2}}_0 \frac{1}{3} \frac{4 \s^2x}{4(1+\bronceado^2x) - 3}\,dx$$
Ahora puedo poner fácilmente $\tan x = t$ y me sale $\sec^2x \,dx =dt$
Segundo método :
$$\int^{\frac{\pi}{2}}_0 \frac{\cos^2x\,dx}{\cos^2x+4\sin^2x}$$
Dividiendo el numerador y el denominador por $\cos^2x$ obtenemos :
$$=\int^{\frac{\pi}{2}}_0 \frac{dx}{1 +4\tan^2x}$$
$$=\int^{\frac{\pi}{2}}_0 \frac{dx}{(4)\{\frac{1}{4} +\tan^2x\}}$$
$$=\int^{\frac{\pi}{2}}_0 \frac{dx}{(4)\{\{\frac{1}{2}\}^2 +(\tan x)^2\}}$$
Podemos aplicar esta fórmula de la integral de aquí :
$$\int \frac{1}{a^2+x^2}dx = \frac{1}{a}\tan^{-1}\frac{x}{a}$$
Lo intenté, pero no su trabajo aquí, yo creo que haciendo algún tipo de manipulación que pueden poner en práctica esta aquí.. por Favor, sugiera gracias...