$\newcommand{\bbx}[1]{\,\bbox[15px,border:1px groove armada]{\displaystyle{#1}}\,}
\newcommand{\llaves}[1]{\left\lbrace\,{#1}\,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack}
\newcommand{\dd}{\mathrm{d}}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,}
\newcommand{\ic}{\mathrm{i}}
\newcommand{\mc}[1]{\mathcal{#1}}
\newcommand{\mrm}[1]{\mathrm{#1}}
\newcommand{\pars}[1]{\left(\,{#1}\,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\parcial #3^{#1}}}
\newcommand{\raíz}[2][]{\,\sqrt[#1]{\,{#2}\,}\,}
\newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}}
\newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$
\begin{align}
\prod_{k = 1}^{n - 1}\pars{1 + {k \over n^{2}}} & =
{1 \over n^{2n - 2}}\prod_{k = 1}^{n - 1}\pars{k + n^{2}} =
{1 \over n^{2n - 2}}\pars{1 + n^{2}}^{\overline{n - 1}} =
{1 \over n^{2n - 2}}
\,{\Gamma\pars{1 + n^{2} + n - 1} \over \Gamma\pars{1 + n^{2}}}
\\[5mm] & \stackrel{\mrm{as}\ n\ \to\ \infty}{\sim}\,\,\,
{1 \over n^{2n - 2}}
\,{\root{2\pi}\pars{n + n^{2}}^{1/2 + n + n^{2}}\expo{-n - n^{2}} \over
\root{2\pi}\pars{1 + n^{2}}^{3/2 + n^{2}}\expo{-1 - n^{2}}}
\\[5mm] & =
{1 \over n^{2n - 2}}
\,{n^{1 + 2n + 2n^{2}}\pars{1 + 1/n}^{1/2 + n + n^{2}} \over
n^{3 + 2n^{2}}\pars{1 + 1/n^{2}}^{3/2+ n^{2}}}\,\expo{-n + 1}
\\[5mm] & \stackrel{\mrm{as}\ n\ \to\ \infty}{\sim}\,\,\,
\,{\pars{1 + 1/n}^{n} \over
\pars{1 + 1/n^{2}}^{n^{2}}}\,\bracks{\pars{1 + {1 \over n}}^{n^{2}}\expo{-n + 1}}
\\[5mm] & \stackrel{\mrm{as}\ n\ \to\ \infty}{\Large \to}\,\,\,
\lim_{n \to \infty}\exp\pars{n^{2}\ln\pars{1 + {1 \over n}} - n + 1} =
\expo{\color{red}{1/2}} = \bbx{\root{\expo{}}} \approx 1.6487
\end{align}
Tenga en cuenta que
$\ds{n^{2}\ln\pars{1 + {1 \over n}} - n + 1
\,\,\,\stackrel{\mrm{como}\ n\ \para\ \infty}{=}\,\,\,
\color{red}{1 \over 2} + {1 \over 3n} + \mrm{O}\pars{1 \over n^{2}}}$.