Vamos $R=\left[\begin{array}{ccc} \frac{1}{2} & \frac{1}{2} & 0\\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3}\\ 0 & 0 & 1 \end{array}\right]$, $P=\left[\begin{array}{ccc} \frac{13}{36} & \frac{-17}{36} & \frac{4}{36}\\ \frac{-17}{36} & \frac{25}{36} & \frac{-8}{36}\\ \frac{4}{36} & \frac{-8}{36} & \frac{4}{36} \end{array}\right]$ , $Q=\left[\begin{array}{ccc} 0 & 0 & 0\\ 0 & \frac{1}{9} & \frac{-1}{9}\\ 0 & \frac{-1}{9} & \frac{1}{9} \end{array}\right]$, $y(0)=\left[\begin{array}{c} 1 \\ 2 \\ 5 \end{array}\right]$.
Definir $$ r(k)=\frac{y^{T}(0)(R^{T})^{k-1}PR^{k-1}y(0)}{y^{T}(0)(R^{T})^{k-1}QR^{k-1}y(0)} $$
El problema que me gustaría ver es la forma de representar el valor de $\lim_{k\rightarrow\infty}r(k)$ con la propiedad de la matriz $P$ $Q$ (por ejemplo, autovalor).
Tenga en cuenta que tenemos $\lim_{k\rightarrow\infty}R^{k}=\left[\begin{array}{ccc} 0 & 0 & 1\\ 0 & 0 & 1\\ 0 & 0 & 1 \end{array}\right]$, the row and column sum of $P$ and $Q$ are $0$ and actually $\lim_{k\rightarrow\infty}r(k)$ exists. Because $\lim_{k\rightarrow\infty} R^{k}y(0)= \left[\begin{array}{c} 5 \\ 5 \\ 5 \end{array}\right]$, thus both the numerator and denominator converge to $0$ which leads to a $\frac{0}{0}$ indefinite form. It is believed that the value of $\lim_{k\rightarrow\infty}r(k)$ is encoded in matrix pair $(P,Q)$, but I'm unable to come up with a formula or even the connection between $\lim_{k\rightarrow\infty}r(k)$ and $(P,Q)$podría alguien ayudarme en eso ?