Vamos R=[12120131313001], P=[1336−1736436−17362536−836436−836436] , Q=[000019−190−1919], y(0)=[125].
Definir r(k)=yT(0)(RT)k−1PRk−1y(0)yT(0)(RT)k−1QRk−1y(0)
El problema que me gustaría ver es la forma de representar el valor de lim con la propiedad de la matriz P Q (por ejemplo, autovalor).
Tenga en cuenta que tenemos \lim_{k\rightarrow\infty}R^{k}=\left[\begin{array}{ccc} 0 & 0 & 1\\ 0 & 0 & 1\\ 0 & 0 & 1 \end{array}\right], the row and column sum of P and Q are 0 and actually \lim_{k\rightarrow\infty}r(k) exists. Because \lim_{k\rightarrow\infty} R^{k}y(0)= \left[\begin{array}{c} 5 \\ 5 \\ 5 \end{array}\right], thus both the numerator and denominator converge to 0 which leads to a \frac{0}{0} indefinite form. It is believed that the value of \lim_{k\rightarrow\infty}r(k) is encoded in matrix pair (P,Q), but I'm unable to come up with a formula or even the connection between \lim_{k\rightarrow\infty}r(k) and (P,Q)podría alguien ayudarme en eso ?