¿Cómo puedo demostrar que $$(1+2\cos2\theta)^3=7+2(6\cos2\theta+3\cos4\theta+\cos6\theta)$$ utilizando el producto tensor y la Clebsch Gordan Teorema?
Respuestas
¿Demasiados anuncios?El Clebsch Gordan fórmula para los personajes de $SU(2)$ es el de la igualdad $$\chi_m \cdot \chi_n = \chi_{m+n} + \chi_{m+n-2} + \cdots + \chi_{|m-n|}$$ donde $$\chi_m(\theta)= e^{im\theta} + e^{i(m-2)\theta} + \cdots e^{-i m \theta}$$
Así que usted quiere expresar $\chi_2^3$ como una combinación de $\chi_n$'s. Tenemos $$\chi_2^2 = \chi_4 +\chi_2+ \chi_0$$ así $$\chi_2^3 = \chi_2(\chi_4 +\chi_2+ \chi_0)= (\chi_6 + \chi_4 + \chi_2)+ (\chi_4 + \chi_2 + \chi_0)+\chi_2 = \chi_6 + 2 \chi_4+ 3\chi_2+ \chi_0$$
Ahora sustituimos en la expresión de $\chi_0$, $\chi_2$, $\chi_4$, $\chi_6$ y obtener el resultado.
Tenemos $$(1+2\cos(2\theta))^3=1+3\cdot 2\cos(2\theta)+3(2\cos(2\theta))^2+(2\cos(2\theta))^3$$ and this is (simplified) $$-1+12\, \a la izquierda( \cos \left( \theta \right) \right) ^{2}-48\, \left( \cos \left( \theta \right) \right) ^{4}+64\, \a la izquierda( \cos \left( \theta \right) \right) ^{6} $$ expandiendo el lado derecho obtenemos $$-1+12\, \left( \cos \left( \theta \right) \right) ^{2}-48\, \left( \cos \left( \theta \right) \right) ^{4}+64\, \a la izquierda( \cos \left( \theta \right) \right) ^{6} $$ este es el mismo! $$\cos(2x)=2\cos(x)^2-1$$ $$\cos(4x)=8\cos(x)^4-8\cos(x)^2+1$$ $$\cos(6x)=32\cos(x)^6-48\cos(x)^4+18\cos(x)^2-1$$