Deje $ f $ ser una doble función derivable con $ f (0) = 0, f (1) = 1$$ f '(0) = f' (1) = 0 $,$ 4 \leq | f'' (x ) | $, para algunas de las $ x \in [0,1] $.
He intentado utilizar el valor medio teorema para los derivados con
$ \dfrac{f '(1)-f' (0)}{f (1)-f (0) } = f '(c) = 0$
así que hay un valor en el que $ f ''(c) = 0 $, pero eso no me ayuda.
Alguna idea? Cualquier ayuda es muy apreciada.