Demasiado tiempo para comentar...
Mediante la sustitución de Euler $\sqrt{3+x^{2}}=x+t$, nos encontramos con que la integral se transforma a medida
$$\begin{align}
\mathcal{I}
&=\int_{0}^{1}\mathrm{d}x\,\frac{\operatorname{arctanh}{\left(\frac{1}{\sqrt{3+x^{2}}}\right)}}{1+x^{2}}\\
&=\int_{\sqrt{3}}^{1}\mathrm{d}t\,\frac{\left(-1\right)\left(3+t^{2}\right)}{2t^{2}}\cdot\frac{1}{1+\left(\frac{3-t^{2}}{2t}\right)^{2}}\\
&~~~~~\times\operatorname{arctanh}{\left(\frac{2t}{3+t^{2}}\right)};~~~\small{\left[\sqrt{3+x^{2}}=x+t\right]}\\
&=\int_{1}^{\sqrt{3}}\mathrm{d}t\,\frac{2\left(t^{2}+3\right)}{\left(t^{4}-2t^{2}+9\right)}\operatorname{arctanh}{\left(\frac{2t}{3+t^{2}}\right)}\\
&=\sqrt{3}\int_{\frac{1}{\sqrt{3}}}^{1}\mathrm{d}u\,\frac{2\left(3u^{2}+3\right)}{\left(9u^{4}-6u^{2}+9\right)}\operatorname{arctanh}{\left(\frac{2\sqrt{3}\,u}{3+3u^{2}}\right)};~~~\small{\left[t=\sqrt{3}\,u\right]}\\
&=\frac{2}{\sqrt{3}}\int_{\frac{1}{\sqrt{3}}}^{1}\mathrm{d}u\,\frac{\left(u^{2}+1\right)}{\left(u^{4}-\frac23u^{2}+1\right)}\operatorname{arctanh}{\left(\frac{1}{\sqrt{3}}\cdot\frac{2u}{1+u^{2}}\right)}.\\
\end{align}$$
Establecimiento $\alpha:=\arcsin{\left(\frac{1}{\sqrt{3}}\right)}\in\left(0,\frac{\pi}{4}\right)$, ten en cuenta que
$$\cos{\left(2\alpha\right)}=1-2\sin^{2}{\left(\alpha\right)}=\frac13.$$
Por lo tanto,
$$\begin{align}
\mathcal{I}
&=\frac{2}{\sqrt{3}}\int_{\frac{1}{\sqrt{3}}}^{1}\mathrm{d}u\,\frac{\left(u^{2}+1\right)}{\left(u^{4}-\frac23u^{2}+1\right)}\operatorname{arctanh}{\left(\frac{1}{\sqrt{3}}\cdot\frac{2u}{1+u^{2}}\right)}\\
&=2\sin{\left(\alpha\right)}\int_{\sin{\left(\alpha\right)}}^{1}\mathrm{d}u\,\frac{u^{2}+1}{u^{4}-2u^{2}\cos{\left(2\alpha\right)}+1}\operatorname{arctanh}{\left(\frac{2u\sin{\left(\alpha\right)}}{1+u^{2}}\right)}\\
&=\sin{\left(\alpha\right)}\int_{\sin{\left(\alpha\right)}}^{1}\mathrm{d}u\,\frac{u^{2}+1}{u^{4}-2u^{2}\cos{\left(2\alpha\right)}+1}\ln{\left(\frac{1+\left(\frac{2u\sin{\left(\alpha\right)}}{u^{2}+1}\right)}{1-\left(\frac{2u\sin{\left(\alpha\right)}}{u^{2}+1}\right)}\right)}\\
&=\sin{\left(\alpha\right)}\int_{\sin{\left(\alpha\right)}}^{1}\mathrm{d}u\,\frac{u^{2}+1}{\left[u^{2}-2u\cos{\left(\alpha\right)}+1\right]\left[u^{2}+2u\cos{\left(\alpha\right)}+1\right]}\\
&~~~~~\times\ln{\left(\frac{u^{2}+2u\sin{\left(\alpha\right)}+1}{u^{2}-2u\sin{\left(\alpha\right)}+1}\right)}\\
&=\frac12\sin{\left(\alpha\right)}\int_{\sin{\left(\alpha\right)}}^{1}\mathrm{d}u\,\left[\frac{1}{u^{2}+2u\cos{\left(\alpha\right)}+1}+\frac{1}{u^{2}-2u\cos{\left(\alpha\right)}+1}\right]\\
&~~~~~\times\left[\ln{\left(u^{2}+2u\sin{\left(\alpha\right)}+1\right)}-\ln{\left(u^{2}-2u\sin{\left(\alpha\right)}+1\right)}\right].\\
\end{align}$$
Por lo tanto, la integral de la $\mathcal{I}$ puede ser reducido a una suma de integrales de la forma,
$$\int\mathrm{d}x\,\frac{\ln{\left(x+p\right)}}{x+q};~~~\small{\left(p,q\right)\in\mathbb{C}^{2}},$$
así que , en principio, debería ser posible evaluar $\mathcal{I}$ en términos de dilogarithms con argumentos complejos...