\newcommand{\ángulos}[1]{\left\langle\, nº 1 \,\right\rangle}
\newcommand{\llaves}[1]{\left\lbrace\, nº 1 \,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\, nº 1 \,\right\rbrack}
\newcommand{\ceil}[1]{\,\left\lceil\, nº 1 \,\right\rceil\,}
\newcommand{\dd}{{\rm d}}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\dsc}[1]{\displaystyle{\color{red}{#1}}}
\newcommand{\expo}[1]{\,{\rm e}^{#1}\,}
\newcommand{\fermi}{\,{\rm f}}
\newcommand{\piso}[1]{\,\left\lfloor #1 \right\rfloor\,}
\newcommand{\mitad}{{1 \over 2}}
\newcommand{\ic}{{\rm i}}
\newcommand{\iff}{\Longleftrightarrow}
\newcommand{\imp}{\Longrightarrow}
\newcommand{\Li}[1]{\,{\rm Li}_{#1}}
\newcommand{\norm}[1]{\left\vert\left\vert\, nº 1\,\right\vert\right\vert}
\newcommand{\pars}[1]{\left (\, nº 1 \,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\parcial #3^{#1}}}
\newcommand{\pp}{{\cal P}}
\newcommand{\raíz}[2][]{\,\sqrt[#1]{\vphantom{\large Un}\,#2\,}\,}
\newcommand{\sech}{\,{\rm sech}}
\newcommand{\sgn}{\,{\rm sgn}}
\newcommand{\totald}[3][]{\frac{{\rm d}^{#1} #2}{{\rm d} #3^{#1}}}
\newcommand{\ul}[1]{\underline{#1}}
\newcommand{\verts}[1]{\left\vert\, nº 1 \,\right\vert}
Permite a \ds{{\cal V}_{j}\pars{m}} la probabilidad de que cualquier \ds{v_{j}} de los valores de \ds{m = \pm 1} \ds{{\cal W}_{j}\pars{m}} la probabilidad de que cualquier \ds{w_{j}} de los valores de \ds{m = -1,0,1} tal que
{\cal V}_{j}\pars{m} = \media\,,\qquad
{\cal W}_{j}\pars{m}=
{1 \over 4}\,\delta_{m,-1} + \media\,\delta_{m0} + {1 \over 4}\,\delta_{m1}
={1 \over 4}\,\delta_{m^{2},1} + \media\,\delta_{m0}
El resultado está dado por:
\begin{align}&\color{#66f}{\large{\rm P}\pars{Y=0\mid X=0}}
\\[5mm]&=\sum_{v_{1}\ =\ \pm 1}{\cal V}_{1}\pars{v_{1}}\ldots
\sum_{v_{n}\ =\ \pm 1}{\cal V}_{1}\pars{v_{n}}
\sum_{w_{1}\ =\ -1}^{1}{\cal W}_{1}\pars{w_{1}}\ldots
\sum_{w_{n + 1}\ =\ -1}^{1}{\cal W}_{1}\pars{w_{n}}\times
\\&\phantom{===}
\delta_{\sum_{j\ =\ 1}^{n}v_{j}w_{j},0}\
\delta_{\sum_{k\ =\ 1}^{n}v_{k}w_{k + 1},0}
\\[5mm]&={1 \over 2^{n}}\sum_{v_{1}\ =\ \pm 1}\ldots\sum_{v_{n}\ =\ \pm 1}
\sum_{w_{1}\ =\ -1}^{1}{\cal W}_{1}\pars{w_{1}}\ldots
\sum_{w_{n + 1}\ =\ -1}^{1}{\cal W}_{1}\pars{w_{n}}\times
\\&\phantom{===--}
\delta_{\sum_{j\ =\ 1}^{n}v_{j}w_{j},0}\
\delta_{\sum_{k\ =\ 1}^{n}v_{k}w_{k + 1},0}
\end{align}
Con la identidad
\delta_{a0}=\ds{\oint_{\verts{z}\ =\ 1}{1 \over z^{1}}
\,{\dd z \más de 2\pi\ic}}:
\begin{align}&\color{#66f}{\large{\rm P}\pars{Y=0\mid X=0}}
={1 \over 2^{n}}\sum_{v_{1}\ =\ \pm 1}\ldots\sum_{v_{n}\ =\ \pm 1}
\sum_{w_{1}\ =\ -1}^{1}{\cal W}_{1}\pars{w_{1}}\ldots
\sum_{w_{n + 1}\ =\ -1}^{1}{\cal W}_{1}\pars{w_{n}}\times
\\&\oint_{\verts{z}\ =\ 1}{1 \over z^{1 - \sum_{j\ =\ 1}^{n}v_{j}w_{j}}}
\,{\dd z \over 2\pi\ic}
\oint_{\verts{s}\ =\ 1}{1 \over s^{1 - \sum_{k\ =\ 1}^{n}v_{k}w_{k + 1}}}
\,{\dd s \over 2\pi\ic}
\\[5mm]&={1 \over 2^{n}}\oint_{\verts{z}\ =\ 1}\oint_{\verts{s}\ =\ 1}
{1 \over zs}\sum_{v_{1}\ =\ \pm 1}\ldots\sum_{v_{n}\ =\ \pm 1}
\sum_{w_{1}\ =\ -1}^{1}{\cal W}_{1}\pars{w_{1}}\ldots
\sum_{w_{n + 1}\ =\ -1}^{1}{\cal W}_{1}\pars{w_{n}}\times
\\& z^{\sum_{j\ =\ 1}^{n}v_{j}w_{j}}s^{\sum_{k\ =\ 1}^{n}v_{k}w_{k + 1}}
\,{\dd z \over 2\pi\ic}\,{\dd s \over 2\pi\ic}
\\[5mm]&={1 \over 2^{n}}\oint_{\verts{z}\ =\ 1}\oint_{\verts{s}\ =\ 1}
{1 \over zs}\sum_{v_{1}\ =\ \pm 1}\ldots\sum_{v_{n}\ =\ \pm 1}
\sum_{w_{1}\ =\ -1}^{1}{\cal W}_{1}\pars{w_{1}}\ldots
\sum_{w_{n + 1}\ =\ -1}^{1}{\cal W}_{1}\pars{w_{n}}\times
\\&\pars{z^{w_{1}}s^{w_{2}}}^{v_{1}}\ldots\pars{z^{w_{n}}s^{w_{n + 1}}}^{v_{n}}
\,{\dd z \over 2\pi\ic}\,{\dd s \over 2\pi\ic}
\\[5mm]&={1 \over 2^{n}}\oint_{\verts{z}\ =\ 1}\oint_{\verts{s}\ =\ 1}
{1 \over zs}\sum_{w_{1}\ =\ -1}^{1}{\cal W}_{1}\pars{w_{1}}\ldots
\sum_{w_{n + 1}\ =\ -1}^{1}{\cal W}_{1}\pars{w_{n}}\times
\\&\pars{z^{w_{1}}s^{w_{2}} + z^{-w_{1}}s^{-w_{2}}}\ldots
\pars{z^{w_{n}}s^{w_{n + 1}} + z^{-w_{n}}s^{-w_{n + 1}}}
\,{\dd z \over 2\pi\ic}\,{\dd s \over 2\pi\ic}
\\[1cm]&={1 \over 2^{n}}\oint_{\verts{z}\ =\ 1}\oint_{\verts{s}\ =\ 1}
\\[2mm]&{{\mathbb E}\bracks{%
\pars{z^{w_{1}}s^{w_{2}} + z^{-w_{1}}s^{-w_{2}}}\ldots
\pars{z^{w_{n}}s^{w_{n + 1}} + z^{-w_{n}}s^{-w_{n + 1}}}} \over zs}
\,{\dd z \over 2\pi\ic}\,{\dd s \over 2\pi\ic}
\end{align}
\ds{\tt\mbox{So far, I couldn't go any further}}.