$\newcommand{\+}{^{\daga}}
\newcommand{\ángulos}[1]{\left\langle\, nº 1 \,\right\rangle}
\newcommand{\llaves}[1]{\left\lbrace\, nº 1 \,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\, nº 1 \,\right\rbrack}
\newcommand{\ceil}[1]{\,\left\lceil\, nº 1 \,\right\rceil\,}
\newcommand{\dd}{{\rm d}}
\newcommand{\down}{\downarrow}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,{\rm e}^{#1}\,}
\newcommand{\fermi}{\,{\rm f}}
\newcommand{\piso}[1]{\,\left\lfloor #1 \right\rfloor\,}
\newcommand{\mitad}{{1 \over 2}}
\newcommand{\ic}{{\rm i}}
\newcommand{\iff}{\Longleftrightarrow}
\newcommand{\imp}{\Longrightarrow}
\newcommand{\isdiv}{\,\left.\a la derecha\vert\,}
\newcommand{\cy}[1]{\left\vert #1\right\rangle}
\newcommand{\ol}[1]{\overline{#1}}
\newcommand{\pars}[1]{\left (\, nº 1 \,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\parcial #3^{#1}}}
\newcommand{\pp}{{\cal P}}
\newcommand{\raíz}[2][]{\,\sqrt[#1]{\vphantom{\large Un}\,#2\,}\,}
\newcommand{\sech}{\,{\rm sech}}
\newcommand{\sgn}{\,{\rm sgn}}
\newcommand{\totald}[3][]{\frac{{\rm d}^{#1} #2}{{\rm d} #3^{#1}}}
\newcommand{\ul}[1]{\underline{#1}}
\newcommand{\verts}[1]{\left\vert\, nº 1 \,\right\vert}
\newcommand{\wt}[1]{\widetilde{#1}}$
\begin{align}
I&=\color{#66f}{\Large\int_{0}^{1}{\ln\pars{x} \over 1 - x^{2}}\,\dd x}
=\half\int_{0}^{1}{\ln\pars{x} \over 1 - x}\,\dd x
+\half\int_{0}^{1}{\ln\pars{x} \over 1 + x}\,\dd x
\\[3mm]&=\half\int_{0}^{1}{\ln\pars{x} \over 1 - x}\,\dd x
-\half\int_{0}^{-1}{\ln\pars{-x} \over 1 - x}\,\dd x
=\half\int_{0}^{1}{\ln\pars{1 - x} \over x}\,\dd x
-\half\int_{0}^{-1}{\ln\pars{1 - x} \over x}\,\dd x
\\[3mm]&=-\half\sum_{n = 1}^{\infty}{1 \over n^{2}}
+\half\sum_{n = 1}^{\infty}{\pars{-1}^{n} \over n^{2}}
=-\sum_{n = 1}^{\infty}{1 \over \pars{2n - 1}^{2}}
=-\sum_{n = 1}^{\infty}{1 \over n^{2}}
+\sum_{n = 1}^{\infty}{1 \over \pars{2n}^{2}}
\\[3mm]&=-\,{3 \over 4}\ \underbrace{\sum_{n = 1}^{\infty}{1 \over n^{2}}}
_{\ds{\color{#c00000}{\zeta\pars{2} = {\pi^{2} \over 6}}}}
=-\,{3 \over 4}\,{\pi^{2} \over 6} = \color{#66f}{\Large -\,{\pi^{2} \over 8}}
\end{align}
desde
\begin{align}
\int_{0}^{a}{\ln\pars{1 - x} \over x}\,\dd x\,
&=
\int_{0}^{a}{1 \over x}\pars{-\sum_{n = 1}^{\infty}{x^{n} \over n}}\,\dd x
=-\sum_{n = 1}^{\infty}{a^{n} \over n^{2}}\,,\qquad
\verts{a}\ \leq\ 1
\end{align}