Puede aplicarse directamente de separación de variables, pero en realidad este PDE puede obtener de la forma más simplificada cuando la aplicación de separación de variables, aplicando el siguiente cambio de variables:
Deje $\begin{cases}x_1=a+bx\\t_1=t\end{cases}$ ,
A continuación, $\dfrac{\partial u}{\partial x}=\dfrac{\partial u}{\partial x_1}\dfrac{\partial x_1}{\partial x}+\dfrac{\partial u}{\partial t_1}\dfrac{\partial t_1}{\partial x}=b\dfrac{\partial u}{\partial x_1}$
$\dfrac{\partial^2u}{\partial x^2}=\dfrac{\partial}{\partial x}\left(b\dfrac{\partial u}{\partial x_1}\right)=\dfrac{\partial u}{\partial x_1}\left(b\dfrac{\partial u}{\partial x_1}\right)\dfrac{\partial x_1}{\partial x}+\dfrac{\partial u}{\partial t_1}\left(b\dfrac{\partial u}{\partial x_1}\right)\dfrac{\partial t_1}{\partial x}=b^2\dfrac{\partial^2u}{\partial x_1^2}$
$\dfrac{\partial u}{\partial t}=\dfrac{\partial u}{\partial x_1}\dfrac{\partial x_1}{\partial t}+\dfrac{\partial u}{\partial t_1}\dfrac{\partial t_1}{\partial t}=\dfrac{\partial u}{\partial t_1}$
$\therefore\dfrac{\partial u}{\partial t_1}=\dfrac{b^2c^2}{2}\dfrac{\partial^2u}{\partial x_1^2}+bx_1\dfrac{\partial u}{\partial x_1}+fu$
Con referencia al Cambio de variables dentro de Fokker-Planck de la PDE,
Deje $\begin{cases}x_2=x_1e^{bt_1}\\t_2=t_1\end{cases}$ ,
A continuación, $\dfrac{\partial u}{\partial x_1}=\dfrac{\partial u}{\partial x_2}\dfrac{\partial x_2}{\partial x_1}+\dfrac{\partial u}{\partial t_2}\dfrac{\partial t_2}{\partial x_1}=e^{bt_1}\dfrac{\partial u}{\partial x_2}=e^{bt_2}\dfrac{\partial u}{\partial x_2}$
$\dfrac{\partial^2u}{\partial x_1^2}=\dfrac{\partial}{\partial x_1}\left(e^{bt_2}\dfrac{\partial u}{\partial x_2}\right)=\dfrac{\partial u}{\partial x_2}\left(e^{bt_2}\dfrac{\partial u}{\partial x_2}\right)\dfrac{\partial x_2}{\partial x_1}+\dfrac{\partial u}{\partial t_2}\left(e^{bt_2}\dfrac{\partial u}{\partial x_2}\right)\dfrac{\partial t_2}{\partial x_1}=e^{2bt_2}\dfrac{\partial^2u}{\partial x_2^2}$
$\dfrac{\partial u}{\partial t_1}=\dfrac{\partial u}{\partial x_2}\dfrac{\partial x_2}{\partial t_1}+\dfrac{\partial u}{\partial t_2}\dfrac{\partial t_2}{\partial t_1}=bx_1e^{bt_1}\dfrac{\partial u}{\partial x_2}+\dfrac{\partial u}{\partial t_2}$
$\therefore bx_1e^{bt_1}\dfrac{\partial u}{\partial x_2}+\dfrac{\partial u}{\partial t_2}=\dfrac{b^2c^2e^{2bt_2}}{2}\dfrac{\partial^2u}{\partial x_2^2}+bx_1e^{bt_1}\dfrac{\partial u}{\partial x_2}+fu$
$\dfrac{\partial u}{\partial t_2}-fu=\dfrac{b^2c^2e^{2bt_2}}{2}\dfrac{\partial^2u}{\partial x_2^2}$