Si estás abierto a otras pruebas que tengo una que utiliza la Feynman truco .
Como usted ha dicho , podemos demostrar que ; $\int_{-\infty}^{+\infty}e^{-ix^2} = \int_{-\infty}^{+\infty}\cos(x^2)\,dx - i\int_{-\infty}^{+\infty}\sin(x^2)\,dx $
$I = 2\int_0^{\infty}e^{-ix^2}\,dx$
Para evaluar las integrales de Fresnel uso de Leibniz integral regla,necesitamos introducir un nuevo parámetro .
Así, podemos definir ,$I(t) =\bigg(\int_{0}^{t}e^{-ix^2}\,dx\bigg)^2$
por lo tanto, $I = 2\sqrt{I(t=\infty)}$
$\frac{d}{dt}(I(t)) = \frac{d}{dt}\bigg(\bigg(\int_{0}^{t}e^{-ix^2}\bigg)^2\bigg) =2\cdot \bigg(\int_{0}^{t}e^{-ix^2}\,dx\bigg)\cdot \bigg(\int_0^t\partial_t(e^{-ix^2})\,dx+e^{-it^2}\cdot\frac{dt}{dt} - e^{i\cdot0}\cdot\frac{d(0)}{dt}\bigg)$
$I'(t) = 2\cdot \int_{0}^{t}e^{-ix^2}\,dx\cdot e^{-it^2} $
$I'(t) = 2\int e^{-i(x^2+t^2)}\,dx$
$I'(t) =2\int e^{-it^2(\frac{x^2}{t^2}+1)}\,dx $
deje $ u =\frac xt \implies du = \frac 1t dx \implies t\,du = dx$
$I'(t) = 2\int_0^1 e^{-it^2(1+u^2)}\,tdu$
Este paso es un poco de sentido común, pero espero que me siga,
Observar que, $2t e^{-it^2(1+u^2)} = \partial_t\bigg[\dfrac{e^{-it^2(1+u^2)}}{-i(1+u^2)}\bigg] =\partial_t\bigg[\dfrac{ie^{-it^2(1+u^2)}}{1+u^2}\bigg]$
$I'(t) = 2\large\int_0^1\small \partial_t\dfrac{ie^{-it^2(1+u^2)}}{1+u^2}\,du $
$I'(t) = \frac{d}{dt}\large\int_0^1\small \dfrac{ie^{-it^2(1+u^2)}}{1+u^2}\,du$
Ahora,
$\int I'(t) = I(t) = \large\int\frac{d}{dt}\bigg(\large\int_0^1\small \dfrac{ie^{-it^2(1+u^2)}}{1+u^2}\,du\bigg)dt = \int_0^1 \dfrac{ie^{-it^2(1+u^2)}}{1+u^2}\,du+C$
Por lo tanto ,
$\large{\int_0^1}\small\dfrac{ie^{-it^2(1+u^2)}}{1+u^2}\,du+C = \bigg(\int_{0}^{t}e^{-ix^2}\,dx\bigg)^2$
Ahora para encontrar $C$, dejamos $t = 0 $,
$I(t=0) = \bigg(\int_{0}^{0}e^{-ix^2}\,dx\bigg)^2 = 0 =\large{\int_0^1}\small\dfrac{ie^{-i0(1+u^2)}}{1+u^2}\,du+C $
$\implies 0 = \int_0^1\frac{i}{1+u^2}\,du +C$
$\implies C = -i\arctan(u)\bigg|_0^1$
Por lo tanto, $C= -i\frac\pi4$
Ahora tenemos $I(t)= \int_0^1 \dfrac{ie^{-it^2(1+u^2)}}{1+u^2}\,du-i\frac\pi4$
La sustitución de la espalda , $ u =\frac xt $
nos da
$I(t) = \int_0^1\frac1t\frac{ie^{-it^2(1+(\frac xt)^2)}}{1+(\frac xt)^2}\,dx -i\frac\pi4$
ahora,
$I = 2\sqrt{I(t=\infty)}$
$I = 2\sqrt{\lim_{t\to\infty} \int_0^1\frac1t\frac{ie^{-it^2(1+(\frac xt)^2)}}{1+(\frac xt)^2}\,dx -i\frac\pi4}$
$I = 2\sqrt{-i\cdot\frac\pi4}$
$I = \sqrt\pi\cdot\sqrt {-i}$
$I = \sqrt\pi(\frac{\sqrt2}{2}-i\frac{\sqrt2}{2})$
$I =\frac{\sqrt{2\pi}}{2}- i \frac{\sqrt{2\pi}}{2} =2\int_0^\infty\cos(x^2)\,dx-2i\int_0^\infty \sin(x^2)\,dx $.
la comparación de los coeficientes reales e imaginarios nos da las integrales de fresnel.