La definición de $ X $ como valor mínimo de los elegidos de 4 números.
Por definifion:
$$ \mathbb{E} \left[ X \right] = \sum_{i = 1}^{45} \mathbb{P} \left( X = i \right) i $$
The probability $ \mathbb{P} \left( X = i \right) $ is choosing the number $ i $ and counting the number of combinations of choosing 3 other values higher than $ i $ divided by the number of combinations to have 4 numbers out of 48:
$$ \mathbb{P} \left( X = i \right) = \frac{ \binom{48 - i}{3} }{ \binom{48}{4} } $$
This yields:
$$ \mathbb{E} \left[ X \right] = \sum_{i = 1}^{45} \mathbb{P} \left( X = i \right) i = \sum_{i = 1}^{45} \frac{ \binom{48 - i}{3} }{ \binom{48}{4} } i = 9.8 $$
El de arriba es fácil evaluar el uso de MATLAB:
% Monte Carlo Simulation:
numTrials = 5e6;
vX = zeros([numTrials, 1]);
for ii = 1:numTrials
vX(ii) = min(randperm(48, 4));
end
mean(vX)
% Analytic Simulation
vX = [1:48].';
vP = zeros([48, 1]); %<! Probability of X
denVal = nchoosek(48, 4); %<! Number of combinatirons of 4 values out of 48
for ii = 1:45
numVal = nchoosek(48 - ii, 3);
vP(ii) = numVal / denVal;
end
sum(vP .* vX)