Para demostrar $$\sin\frac{A}{2}+\sin \frac{B}{2}+\sin\frac{C}{2} -1 = 4\sin \frac{\pi -A}{4}\sin\frac{\pi -B}{4} \sin\frac{\pi-C}{4}$$
Mi planteamiento :
$$ \begin{align} \text{L.H.S.} & = \sin\frac{A}{2}+\sin \frac{B}{2}+\sin\frac{C}{2} -1 \\[8pt] & = 2\sin\frac{A+B}{4}\cos\frac{A-B}{4}+\cos\left(\frac{\pi}{2}-\frac{C}{2}\right)-1 \\[8pt] & = 2\sin\frac{\pi -C }{4}\cos\frac{A-B}{4} - 2\sin^2\left(\frac{\pi -C}{4} \right) \\[8pt] & =2\sin\frac{\pi -C }{4}\left\{ \cos\frac{A-B}{4} - \sin\left(\frac{\pi -C}{4} \right)\right\} \end{align} $$
Incapaz de moverse, por favor ayuda. gracias.