$\newcommand{\bbx}[1]{\,\bbox[15px,border:1px groove armada]{\displaystyle{#1}}\,}
\newcommand{\llaves}[1]{\left\lbrace\,{#1}\,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack}
\newcommand{\dd}{\mathrm{d}}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,}
\newcommand{\ic}{\mathrm{i}}
\newcommand{\mc}[1]{\mathcal{#1}}
\newcommand{\mrm}[1]{\mathrm{#1}}
\newcommand{\pars}[1]{\left(\,{#1}\,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\parcial #3^{#1}}}
\newcommand{\raíz}[2][]{\,\sqrt[#1]{\,{#2}\,}\,}
\newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}}
\newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$
\begin{align}
\lim_{n \to \infty}\int_{n}^{\infty}{n^{2}\arctan\pars{1/x} \over x^{2} + n^{2}}
\,\dd x &
\,\,\,\stackrel{x\ \mapsto\ 1/x}{=}\,\,\,
\lim_{n \to \infty}\int_{0}^{1/n}{\arctan\pars{x} \over x^{2} + 1/n^{2}}
\,\dd x
\\[5mm] & =
\lim_{n \to \infty}\bracks{%
\int_{0}^{1/n}{x \over x^{2} + 1/n^{2}}\,\dd x +
\int_{0}^{1/n}{\arctan\pars{x} - x \over x^{2} + 1/n^{2}}\,\dd x}
\end{align}
Con $\ds{0 < x < 1/n}$, tenga en cuenta que $\ds{\exists\ \xi \mid 0 < \xi < x}$ que satisface
$\ds{\verts{\arctan\pars{x} - x} = x\,{\xi^{2} \over 1 + \xi^{2}} < {1 \over n^{3}}}$ tal que
$$
0 < \verts{\int_{0}^{1/n}{\arctan\pars{x} - x \sobre x^{2} + 1/n^{2}}\,\dd x} <
{1 \over n^{3}}\verts{\int_{0}^{1/n}{\dd x \sobre x^{2} + 1/n^{2}}} =
{1 \over n^{3}}\,{n\pi \más de 4}
\,\,\,\stackrel{\mrm{como}\ n\ \para\ \infty} {\}\,\,\, {\large 0}
$$
Entonces
\begin{align}
\lim_{n \to \infty}\int_{n}^{\infty}{n^{2}\arctan\pars{1/x} \over x^{2} + n^{2}}
\,\dd x &
=
\lim_{n \to \infty}\int_{0}^{1/n}{x \over x^{2} + 1/n^{2}}\,\dd x =
\lim_{n \to \infty}
\bracks{{1 \over 2}\ln\pars{1/n^{2} + 1/n^{2} \over 1/n^{2}}}
\\[5mm] = \bbx{{1 \over 2}\,\ln\pars{2}} \approx 0.3466
\end{align}