Deje $\Omega_{1}, \Omega_{2} \subseteq \mathbb{C}$ estar delimitado dominios. Deje $\rho$ ser una métrica en $\Omega_2$ $h: \Omega_1 \rightarrow \Omega_2$ un conformal mapping. Vamos $$h^*\rho(z) = \rho(h(z))\cdot|h'(z)| $$ be the pullback metric on $\Omega_1$. According to the definition I have been given, the curvature on $(\Omega_2,\rho)$ es
$$K_{\Omega_2,\rho}(z) = -\frac{\Delta \log(\rho(z))}{\rho(z)^2}$$
Se afirmó entonces que $K_{\Omega_1,h^*\rho}(z) = K_{\Omega_2,\rho}(h(z))$, es decir,
$$ -\frac{\Delta \log(\rho(h(z))\cdot|h'(z)|) }{(\rho(h(z))\cdot|h'(z)|)^2} = -\frac{\Delta \log(\rho(h(z)))}{\rho(h(z))^2}$$
Yo no puede derivar de este resultado, sin embargo, y, francamente, me parece dudoso. Es esto cierto?