$\newcommand{\bbx}[1]{\,\bbox[15px,border:1px groove armada]{\displaystyle{#1}}\,}
\newcommand{\llaves}[1]{\left\lbrace\,{#1}\,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack}
\newcommand{\dd}{\mathrm{d}}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,}
\newcommand{\ic}{\mathrm{i}}
\newcommand{\mc}[1]{\mathcal{#1}}
\newcommand{\mrm}[1]{\mathrm{#1}}
\newcommand{\pars}[1]{\left(\,{#1}\,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\parcial #3^{#1}}}
\newcommand{\raíz}[2][]{\,\sqrt[#1]{\,{#2}\,}\,}
\newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}}
\newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$
Con $\ds{n!}$-Stirling Asintótica De Expansión:
\begin{align}
\lim_{n \to \infty}{n^{n} \over \pars{n!}^{2}} & =
\lim_{n \to \infty}{n^{n} \over \bracks{\root{2\pi}n^{n + 1/2}\expo{-n}}^{2}} =
{1 \over 2\pi}\lim_{n \to \infty}\bracks{{1 \over n}\pars{\expo{2} \over n}^{n}} \\[5mm] & =
{1 \over 2\pi}\lim_{n \to \infty}{\exp\pars{n\bracks{2 - \ln\pars{n}}} \over n} = \bbx{\large 0}
\end{align}