$$\underline{\text{Method 1}}$$
$\text{S}=\displaystyle\sum_{r=0}^{n}\dfrac{(-1)^r}{\dbinom{n}{r}}$
$=\displaystyle\sum_{r=0}^{n}(-1)^r\dfrac{r!(n-r)!}{n!}$
$=\displaystyle\sum_{r=0}^{n}(-1)^r \dfrac{r!(n-r)!\color{blue}{(n-r+1+r+1)}}{n!}\color{red}{\times\dfrac{1}{(n+2)}}$
$=\displaystyle\sum_{r=0}^{n}\dfrac{1}{n!(n+2)}\left[(-1)^r\left\{r!(n-r+1)!+(n-r)!(r+1)!\right\}\right]$
$\color{blue}{=\displaystyle\sum_{r=0}^{n}\dfrac{1}{n!(n+2)}\left[(-1)^r\left\{T_{r}+T_{r+1}\right\}\right]}\tag{*}$
donde $T_{r}=r!(n-r+1)!$
Claramente, $(*)$ es un telescópico de la serie,
$\implies \text{S}=(-1)^nT_{n+1}+T_{0}$
$=(-1)^n\dfrac{(n+1)!}{n!(n+2)} + \dfrac{(n+1)!}{n!(n+2)}$
Desde $n$ es incluso,
$$\color{red}{\therefore\text{S}=\boxed{2\dfrac{n+1}{n+2}}}$$
$$\underline{\text{Method 2}}$$
Considere el siguiente Lema.
Lema : $$\color{brown}{\displaystyle \sum_{r=0}^k\dfrac{(-1)^r}{\dbinom{k}{r}}=0}$$
donde $k$ es un entero positivo impar.
Prueba : $\text{S}=\displaystyle \sum_{r=0}^k\dfrac{(-1)^r}{\dbinom{k}{r}}$
$=\displaystyle \sum_{r=0}^k\dfrac{(-1)^{k-r}}{\dbinom{k}{k-r}}$ $\displaystyle\color{blue}{\left(\because \sum_{r=0}^{n} f(r) = \sum_{r=0}^{n} f(n-r) \right)} $
$= -\displaystyle \sum_{r=0}^k\dfrac{(-1)^r}{\dbinom{k}{r}}$
$\implies \text{S}=-\text{S}$
$\implies \text{S}=0$
Esto completa la prueba del Lema.
Ahora, desde la $n$ es incluso, $n+1$ es impar.
Usando el Lema, tenemos,
$\color{blue}{\displaystyle \sum_{r=0}^{n+1}\dfrac{(-1)^r}{\dbinom{n+1}{r}}=0} \tag{1}$
Vamos,
$\color{red}{\text{J}=\displaystyle \sum_{r=0}^n\dfrac{(-1)^r}{\dbinom{n}{r}}}\tag{2}$
De operación $(1)+(2)$,
$\implies \text{J}+0=\displaystyle \sum_{r=0}^n\dfrac{(-1)^r}{\dbinom{n}{r}} + \displaystyle \sum_{r=0}^{n+1}\dfrac{(-1)^r}{\dbinom{n+1}{r}}$
$=\displaystyle \sum_{r=0}^n\dfrac{(-1)^r}{\dbinom{n}{r}} + \displaystyle \sum_{r=0}^{n}\dfrac{(-1)^r}{\dbinom{n+1}{r}} +\dfrac{(-1)}{\dbinom{n+1}{n+1}}$
$=\displaystyle \sum_{r=0}^n\dfrac{(-1)^r}{\dbinom{n}{r}} + \displaystyle \sum_{r=0}^{n}\dfrac{(-1)^{n-r}}{\dbinom{n+1}{n-r}} -1$ $\displaystyle\color{blue}{\left(\because \sum_{r=0}^{n} f(r)=\sum_{r=0}^{n} f(n-r)\right)}$
$=\displaystyle \sum_{r=0}^n\dfrac{(-1)^r}{\dbinom{n}{r}} + \displaystyle \sum_{r=0}^{n}\dfrac{(-1)^{r}}{\dbinom{n+1}{r+1}} -1$
$=\displaystyle \sum_{r=0}^n(-1)^r\left\{\dfrac{1}{\dbinom{n}{r}} + \dfrac{r+1}{n+1} \cdot \dfrac{1}{\dbinom{n}{r}}\right\} -1$ $\displaystyle\color{red}{\left[\because \dbinom{n}{r}=\dfrac{n}{r}\dbinom{n-1}{r-1} \ \text{&} \ \dbinom{n}{r}=\dbinom{n}{n-r} \right]}$
$\implies \text{J} = \displaystyle\left(\dfrac{n+2}{n+1}\right) \sum_{r=0}^{n}\dfrac{(-1)^r}{\dbinom{n}{r}}+ \dfrac{1}{n+1} \sum_{r=0}^{n}\dfrac{(-1)^r\cdot r}{\dbinom{n}{r}} -1$
$\implies \text{J}+1 = \displaystyle\left(\dfrac{n+2}{n+1}\right) \text{J}+ \dfrac{1}{n+1} \underbrace{\color{#66f}{\sum_{r=0}^{n}\dfrac{(-1)^r\cdot r}{\dbinom{n}{r}}}}_{\huge{= \ \text{G} \ (\text{let})}} \tag{3}$
Ahora,
$\text{G}=\displaystyle\sum_{r=0}^{n}\dfrac{(-1)^r\cdot r}{\dbinom{n}{r}}$
$=\displaystyle\sum_{r=0}^{n}\dfrac{(-1)^{n-r}\cdot (n-r)}{\dbinom{n}{n-r}}$
$=\displaystyle\sum_{r=0}^{n}\dfrac{(-1)^{r}\cdot (n-r)}{\dbinom{n}{r}}$
$=\displaystyle n\sum_{r=0}^{n}\dfrac{(-1)^{r}}{\dbinom{n}{r}} - \sum_{r=0}^{n}\dfrac{(-1)^{r}\cdot r}{\dbinom{n}{r}}$
$\implies \text{G}=n\cdot \text{J}-\text{G}$
$\implies\color{red}{\text{G}=\dfrac{\text{J}n}{2}} \tag{4}$
De $(3)\ \text{&} \ (4)$,
$\text{J}+1= \displaystyle\left(\dfrac{n+2}{n+1}\right) \text{J}+ \dfrac{\text{G}}{n+1}$
$\implies \text{J}+1= \displaystyle\left(\dfrac{n+2}{n+1}\right) \text{J}+ \dfrac{\text{J}n}{2(n+1)}$
$$\color{green}{\therefore\text{J}=\boxed{2\dfrac{n+1}{n+2}}}$$
Q. E. D.