En última instancia, quiere demostrar que $^{(1)}$ para $n\geqslant 2$ $${\left( {1 + \frac{1}{{\left( {n - 1} \right)\left( {n + 1} \right)}}} \right)^n} > 1 + \frac{1}{n}$$
Utilizando el Teorema del Binomio, el lado izquierdo es $${\left( {1 + \frac{1}{{\left( {n - 1} \right)\left( {n + 1} \right)}}} \right)^n} > 1 + \frac{n}{{\left( {n - 1} \right)\left( {n + 1} \right)}}$$
¿Puede mostrar el lado derecho es $>1+n^{-1}$ ? Tenga en cuenta que $$1 + \frac{n}{{\left( {n + 1} \right)\left( {n - 1} \right)}} - \left( {1 + \frac{1}{n}} \right) = \frac{1}{{n\left( {n - 1} \right)\left( {n + 1} \right)}} > 0\;;\; \text{if }\;n\geqslant 2$$
$(1)$ $$\begin{align} {\left( {1 - \frac{1}{n}} \right)^{ - n}} &> {\left( {1 - \frac{1}{{n + 1}}} \right)^{ - n - 1}} \\ {\left( {\frac{{n - 1}}{n}} \right)^{ - n}} &> {\left( {\frac{n}{{n + 1}}} \right)^{ - n}}{\left( {\frac{n}{{n + 1}}} \right)^{ - 1}} \\ {\left( {\frac{{n - 1}}{n}} \right)^{ - n}} &> {\left( {\frac{n}{{n + 1}}} \right)^{ - n}}\left( {1 + \frac{1}{n}} \right) \\ {\left( {\frac{n}{{n - 1}}} \right)^n}{\left( {\frac{n}{{n + 1}}} \right)^n} &> 1 + \frac{1}{n} \\ {\left( {\frac{{{n^2}}}{{{n^2} - 1}}} \right)^n} &> 1 + \frac{1}{n} \\ {\left( {1 + \frac{1}{{{n^2} - 1}}} \right)^n} &> 1 + \frac{1}{n} \end{align} $$