$\newcommand{\bbx}[1]{\,\bbox[8px,border:1px groove armada]{\displaystyle{#1}}\,}
\newcommand{\llaves}[1]{\left\lbrace\,{#1}\,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack}
\newcommand{\dd}{\mathrm{d}}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,}
\newcommand{\ic}{\mathrm{i}}
\newcommand{\mc}[1]{\mathcal{#1}}
\newcommand{\mrm}[1]{\mathrm{#1}}
\newcommand{\pars}[1]{\left(\,{#1}\,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\parcial #3^{#1}}}
\newcommand{\raíz}[2][]{\,\sqrt[#1]{\,{#2}\,}\,}
\newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}}
\newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$
\begin{align}
&\bbox[15px,#ffe]{\ds{\left.\sum_{i = 1}^{\infty}{1 \over i\pars{i + 1}\pars{i + 2}\ldots\pars{i + k}}\right\vert_{\ k\ \in\ \mathbb{N}_{\ \geq\ 1}}}} =
\sum_{i = 1}^{\infty}{1 \over i^{\,\overline{k + 1}}} =
\sum_{i = 1}^{\infty}{1 \over \Gamma\pars{i + k + 1}/\Gamma\pars{i}}
\\[5mm] = &\
{1 \over k!}\sum_{i = 1}^{\infty}{\Gamma\pars{i}\Gamma\pars{k + 1} \over \Gamma\pars{i + k + 1}} =
{1 \over k!}\sum_{i = 1}^{\infty}\int_{0}^{1}t^{i - 1}\pars{1- t}^{k}\,\dd t =
{1 \over k!}\int_{0}^{1}\pars{1- t}^{k - 1}\,\dd t =
\bbx{\ds{1 \over k\ k!}}
\end{align}