9 votos

Podemos encontrar el comportamiento asintótico de esta $f(x) =\int_{0}^{\infty}\frac{u^2}{1+\frac{e^{u^2}}{x}}du$?

Me encontré con esta función en la Mecánica Estadística. $$f(x) =\int_{0}^{\infty}\frac{u^2}{1+\frac{e^{u^2}}{x}}du$$ Para $x=0$, definimos su valor a cero. Yo quería ver el comportamiento asintótico en el límite de x tiende a a $\infty$. Podemos expresar el comportamiento asintótico de esta función, en el límite de x tiende a a $\infty$, en términos de otras funciones matemáticas (si es posible; en la escuela primaria funciones)? Por algunas razones físicas (que son irrelevantes aquí), $x$ pertenece a $[0,\infty)$.

6voto

Fabian Puntos 12538

En un primer paso, se realiza la sustitución de $v=e^{u^2}$. obtenemos $$ f(x) =\int_{0}^{\infty}\frac{u^2}{1+\frac{e^{u^2}}{x}}du = \int_1^\infty \frac{(\ln v)^{1/2}}{2 v(1+v/x)} dv \;.$$

A continuación, echaremos un vistazo a la función $$ f_0(x) = \int_1^x \frac{(\ln v)^{1/2}}{2 v } dv =\frac13 (\ln x)^{3/2}$$ La intuición es que la integral de $f(x)$ está dominado por $v \lesssim x$. En esta región la integral está dado aproximadamente por la expresión anterior.

De hecho, hemos $$f(x) - f_0(x) = -\int_1^x \frac{(\ln v)^{1/2}}{2(x+v)} dv+ \int_x^\infty \frac{(\ln v)^{1/2}}{2 v(1+v/x)} dv;$$ con las estimaciones $$\int_1^x \frac{(\ln v)^{1/2}}{2(x+v)} dv < \int_1^x \frac{(\ln x)^{1/2}}{2x} dv <\frac{(\ln x)^{1/2}}{2} $$ y $$\int_x^\infty \frac{(\ln v)^{1/2}}{2 v(1+v/x)} dv < \frac{x}{2}\int_x^\infty \frac{(\ln v)^{1/2}}{ v^2} dv = \frac12 (\ln x)^{1/2} + \frac{x}{4} \int_1^\infty \frac{1}{v^2(\ln v)^{1/2}} dv \\< \frac12 (\ln x)^{1/2} +\frac{x}{4 (\ln x)^{1/2}} \int_1^\infty \frac{1}{v^2} dv < \frac12 (\ln x)^{1/2} + \frac{1}{4 (\ln x)^{1/2}}\;. $$

Con esto, hemos establecido que $$f(x) = \frac{1}{3} (\ln x)^{3/2} + O(\ln^{1/2} x).$$

5voto

psychotik Puntos 171

1. (No tan iluminadora) expresión analítica. Supongamos por un momento que $0 < x < 1$. Entonces

\begin{align*} f(x) &= \int_{0}^{\infty} \frac{xu^2e^{-u^2}}{1 + xe^{-u^2}} \, du = \sum_{n=1}^{\infty} (-1)^{n-1} x^n \int_{0}^{\infty} u^2 e^{-nu^2} \, du \\ &= -\frac{\sqrt{\pi}}{4} \sum_{n=1}^{\infty} \frac{(-x)^n}{n^{3/2}} = -\frac{\sqrt{\pi}}{4} \operatorname{Li}_{3/2}(-x). \end{align*}

La última función es analítica fuera de $(-\infty, -1]$, y por lo tanto, esta identidad se extiende a todos los de $x \geq 0$ por el principio de continuación analítica. Pero esto no es tan útil cuando se investiga el comportamiento asintótico de $f(x)$.

2. Asintótica de expansión. Escribir $\alpha = \log x$ y hacer la sustitución $u = \sqrt{\alpha(v+1)}$. Entonces

\begin{align*} f(x) &= \frac{\alpha^{3/2}}{2} \int_{-1}^{\infty} \frac{\sqrt{1+v}}{1 + e^{\alpha v}} \, dv \\ &= \frac{\alpha^{3/2}}{2} \left( \int_{0}^{1} \sqrt{1-v} \, dv - \int_{0}^{1} \frac{\sqrt{1-v}}{1 + e^{\alpha v}} \, dv + \int_{0}^{\infty} \frac{\sqrt{1+v}}{1 + e^{\alpha v}} \, dv \right). \end{align*}

Esto fácilmente se obtiene el siguiente asymptotics

$$ f(x) = \frac{1}{3}(\log x)^{3/2} + \mathcal{O}\left( (\log x)^{1/2} \right). $$

Para una mejor resolución, recordemos que el polylogarithm se define como $\operatorname{Li}_s(z) = \sum_{n=1}^{\infty} \frac{z^n}{n^s}$$|z| < 1$. Entonces

$$ \frac{1}{1 + e^{\alpha v}} = -\operatorname{Li}_0(-e^{-\alpha v}), \qquad \frac{d}{dv} \operatorname{Li}_{s+1}(-e^{-\alpha v}) = - \alpha \operatorname{Li}_s(-e^{-\alpha v}) $$

y por lo tanto

\begin{align*} \int_{0}^{\infty} \frac{\sqrt{1+v}}{1 + e^{\alpha v}} \, dv &= -\int_{0}^{\infty} (1+v)^{1/2} \operatorname{Li}_0(-e^{-\alpha v}) \, dv \\ &= -\frac{\operatorname{Li}_1(-1)}{\alpha} - \frac{1}{2\alpha} \int_{0}^{\infty} \frac{\operatorname{Li}_1(-e^{-\alpha v})}{(1+v)^{1/2}} \, dv \\ &= -\frac{\operatorname{Li}_1(-1)}{\alpha} - \frac{\operatorname{Li}_2(-1)}{2\alpha^2} + \frac{1}{4\alpha^2} \int_{0}^{\infty} \frac{\operatorname{Li}_2(-e^{-\alpha v})}{(1+v)^{3/2}} \, dv \end{align*}

y, en principio, el mismo argumento puede ser aplicado para extraer un asintótica de expansión a cualquier orden fijo. Del mismo modo,

\begin{align*} \int_{0}^{1} \frac{\sqrt{1-v}}{1 + e^{\alpha v}} \, dv &= -\int_{0}^{1} (1-v)^{1/2} \operatorname{Li}_0(-e^{-\alpha v}) \, dv \\ &= -\frac{\operatorname{Li}_1(-1)}{\alpha} + \frac{1}{2\alpha} \int_{0}^{1} \frac{\operatorname{Li}_1(-e^{-\alpha v})}{(1-v)^{1/2}} \, dv \\ &= -\frac{\operatorname{Li}_1(-1)}{\alpha} + \frac{\operatorname{Li}_2(-1) - \operatorname{Li}_2(e^{-\alpha})}{2\alpha^2} \\ &\qquad + \frac{1}{4\alpha^2} \int_{0}^{1} \frac{\operatorname{Li}_2(-e^{-\alpha v}) - \operatorname{Li}_2(-e^{-\alpha})}{(1-v)^{3/2}} \, dv \end{align*}

y así sucesivamente. Utilizando los resultados anteriores, se obtiene un mejor asymptotics

$$ f(x) = \frac{1}{3} (\log x)^{3/2} + \frac{\pi^2}{24} \frac{1}{(\log x)^{1/2}} + \mathcal{O}\left( \frac{1}{(\log x)^{3/2}} \right). $$

3voto

Felix Marin Puntos 32763

$\newcommand{\bbx}[1]{\,\bbox[15px,border:1px groove armada]{\displaystyle{#1}}\,} \newcommand{\llaves}[1]{\left\lbrace\,{#1}\,\right\rbrace} \newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack} \newcommand{\dd}{\mathrm{d}} \newcommand{\ds}[1]{\displaystyle{#1}} \newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,} \newcommand{\ic}{\mathrm{i}} \newcommand{\mc}[1]{\mathcal{#1}} \newcommand{\mrm}[1]{\mathrm{#1}} \newcommand{\pars}[1]{\left(\,{#1}\,\right)} \newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\parcial #3^{#1}}} \newcommand{\raíz}[2][]{\,\sqrt[#1]{\,{#2}\,}\,} \newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}} \newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$ \begin{align} \mrm{f}\pars{x} & \equiv \int_{0}^{\infty}{u^{2} \over 1 + \expo{u^{2}}/x}\,\dd u \,\,\,\stackrel{u^{2}\ \mapsto\ u}{=}\,\,\, {1 \over 2}\int_{0}^{\infty}{u^{1/2} \over \expo{u}/x + 1}\,\dd u = -\,{1 \over 2}\,\Gamma\pars{3 \over 2}\mrm{Li}_{3/2}\pars{-x} \\[5mm] & = -\,{1 \over 4}\,\root{\pi}\,\mrm{Li}_{3/2}\pars{-x}\label{1}\tag{1} \end{align}

Ver el Polylogarithm Representación Integral.

Mediante el uso de la Polylogarithm Asintótica de Expansión, \eqref{1} se convierte en ( $\ds{B_{n}}$ es un Número de Bernoulli )

\begin{align} \mrm{f}\pars{x} & = -\,{1 \over 4}\,\root{\pi}\sum_{k = 0}^{\infty}\pars{-1}^{k}\pars{1 - 2^{1 - 2k}}\pars{2\pi}^{2k}\, {B_{2k} \over \pars{2k}!}\,{\ln^{3/2 - 2k}\pars{x} \over \Gamma\pars{5/2 - 2k}} \\[5mm] & = \bbx{{1 \over 3}\,\ln^{3/2}\pars{x} + {\pi^{2} \over 24}\,\ln^{-1/2}\pars{x} + {7\pi^{4} \over 1920}\,\ln^{-5/2}\pars{x} + \mrm{O}\pars{\ln^{-9/2}\pars{x}}\ \mbox{as}\ x\ \to\ \infty} \end{align}

2voto

Tim Almond Puntos 1887

Tenemos una lineal límite superior: $$f=\int_0^\infty\frac{xu^2e^{-u^2}}{1+xe^{-u^2}}du\le x\int_0^\infty u^2e^{-u^2} du.$$But we also have a $O(1)$ lower bound: $$f\ge\frac{x}{1+xe^{-1}}\int_0^1u^2e^{-u^2}du=\frac{\int_0^1u^2e^{-u^2}du}{1/x+e^{-1}}.$$

i-Ciencias.com

I-Ciencias es una comunidad de estudiantes y amantes de la ciencia en la que puedes resolver tus problemas y dudas.
Puedes consultar las preguntas de otros usuarios, hacer tus propias preguntas o resolver las de los demás.

Powered by:

X