Suponer que $\vec{\phi}(x^1,x^2) = (x^1,x^2,(x^1)^2+(x^2)^2)$. El tensor métrico inducido por $\vec{\phi}$ está dado por:
$$g = \begin{pmatrix}1+4(x^2)^2 & 4x^1x^2 \\\ 4x^1x^2 & 1+4(x^2)^2\end{pmatrix}$$
Sea $x^1 = \bar{x}^1\cos\bar{x}^2$
$x^2 = \bar{x}^1\sin\bar{x}^2$
Encuentra las componentes del tensor métrico $\bar{g}_{12}=\bar{g}_{21},\bar{g}_{22}$ en el sistema de coordenadas $\bar{x}^1,\bar{x}^2$.
Hasta ahora, esto es lo que estoy pensando, pero estoy confundido sobre cómo resolver el problema.
$$\bar{g}_{kl} = \sum_{j=1}^2 \sum_{i=1}^2 g_{ij} \frac{\partial x^i}{\partial \bar{x}^k} \frac{\partial x^j}{\partial \bar{x}^l}$$
Entonces, en el caso de $\bar{g}_{12} = \bar{g}_{21}$:
$$\bar{g}_{12} = \sum_{j=1}^2 \sum_{i=1}^2 g_{ij} \frac{\partial x^i}{\partial \bar{x}^1} \frac{\partial x^j}{\partial \bar{x}^2}$$
$$ = g_{11} \frac{\partial x^1}{\partial\bar{x}^1}\frac{\partial x^1}{\partial\bar{x}^1}+ g_{12} \frac{\partial x^1}{\partial\bar{x}^1}\frac{\partial x^2}{\partial\bar{x}^1}+g_{21} \frac{\partial x^2}{\partial\bar{x}^1}\frac{\partial x^1}{\partial\bar{x}^1}+g_{22} \frac{\partial x^2}{\partial\bar{x}^1}\frac{\partial x^2}{\partial\bar{x}^1}$$
$\frac{\partial x^1}{\partial\bar{x}^1} = \cos \bar{x}^2$
$\frac{\partial x^2}{\partial\bar{x}^1} = \sin \bar{x}^2$
$\frac{\partial x^1}{\partial\bar{x}^2} = -\bar{x}^1 \sin \bar{x}^2$
$\frac{\partial x^2}{\partial\bar{x}^2} = \bar{x}^1\cos \bar{x}^2$
Entonces $\bar{g}_{12} = (1+4(x^1)^2)(\cos\bar{x}^2)^2+2(4x^1x^2)(\cos \bar{x}^2)(\sin \bar{x}^2)+(1+4(x^2)^2)(\sin\bar{x}^2)^2$