Tenía curiosidad acerca de lo grande que relación podía quedarse. Tuve que imprimir sólo cuando la proporción supera 1.5. No parece estar muriendo. La parte posterior de que el ejercicio dice demostrar la limsup es, al menos, $\pi^2/12 \approx 0.822467$ De lo que yo estoy viendo, un limsup entre 1 y 2 parece una buena apuesta. Probablemente sea difícil de demostrar, aunque.
En primer lugar, sólo cuando la proporción aumenta:
n = 4 old q 3 q 5 ratio 0.1712120437515166 gap 2
n = 5 old q 5 q 6 ratio 0.2356168135275511 gap 1
n = 6 old q 6 q 7 ratio 0.2956839724294714 gap 1
n = 7 old q 7 q 10 ratio 0.9764671388072846 gap 3
n = 17 old q 23 q 26 ratio 1.103425220291327 gap 3
n = 32 old q 47 q 51 ratio 1.437072374330929 gap 4
n = 151 old q 241 q 246 ratio 1.608142099431302 gap 5
n = 516 old q 843 q 849 ratio 1.760024446369004 gap 6
Ahora, la proporción mayor de 1.5
n = 151 old q 241 q 246 ratio 1.608142099431302 gap 5
n = 516 old q 843 q 849 ratio 1.760024446369004 gap 6
n = 1026 old q 1679 q 1685 ratio 1.675782937474057 gap 6
n = 1756 old q 2887 q 2893 ratio 1.615152343691931 gap 6
n = 2208 old q 3623 q 3629 ratio 1.590625635457252 gap 6
n = 3071 old q 5045 q 5051 ratio 1.556608495338398 gap 6
n = 13392 old q 22019 q 22026 ratio 1.658619700318701 gap 7
n = 14985 old q 24646 q 24653 ratio 1.647791097638391 gap 7
n = 18804 old q 30922 q 30929 ratio 1.626378938461883 gap 7
n = 28995 old q 47671 q 47678 ratio 1.587166663694555 gap 7
n = 33718 old q 55446 q 55453 ratio 1.573982134381624 gap 7
n = 34728 old q 57119 q 57126 ratio 1.571431499337303 gap 7
n = 44650 old q 73446 q 73453 ratio 1.550075102998279 gap 7
n = 45501 old q 74847 q 74854 ratio 1.54849635050823 gap 7
n = 58776 old q 96674 q 96681 ratio 1.527433347355694 gap 7
n = 64310 old q 105771 q 105778 ratio 1.520178814511105 gap 7
n = 73964 old q 121666 q 121673 ratio 1.509052248661901 gap 7
n = 74071 old q 121846 q 121853 ratio 1.50893818425337 gap 7
n = 131965 old q 217069 q 217077 ratio 1.674107764035864 gap 8
n = 408142 old q 671345 q 671353 ratio 1.584428949113135 gap 8
n = 502653 old q 826823 q 826831 ratio 1.569036523505159 gap 8
n = 664314 old q 1092746 q 1092755 ratio 1.742561268994944 gap 9
n = 867735 old q 1427369 q 1427377 ratio 1.530225943242189 gap 8
n = 1274859 old q 2097047 q 2097055 ratio 1.50414070948736 gap 8
n = 4387186 old q 7216617 q 7216626 ratio 1.605004820261783 gap 9
n = 5392319 old q 8870023 q 8870033 ratio 1.768248678666427 gap 10
n = 8741561 old q 14379270 q 14379279 ratio 1.560603965676062 gap 9
n = 13760650 old q 22635346 q 22635355 ratio 1.532852419427845 gap 9
n = 15086919 old q 24816973 q 24816982 ratio 1.527358881812587 gap 9
n = 15227282 old q 25047845 q 25047854 ratio 1.526808447544024 gap 9
^C
Vale la pena destacar que el real $q_{n+1} - q_n$ son bastante pequeñas, cerca del final de esta salida sólo 9 o 10. Eh, salida más corta, me dije para seguir adelante para siempre, y sólo se imprime cuando el tamaño de la brecha aumenta. Aquí es hasta el momento:
n = 4 old q 3 q 5 ratio 0.1712120437515166 gap 2
n = 7 old q 7 q 10 ratio 0.9764671388072846 gap 3
n = 32 old q 47 q 51 ratio 1.437072374330929 gap 4
n = 151 old q 241 q 246 ratio 1.608142099431302 gap 5
n = 516 old q 843 q 849 ratio 1.760024446369004 gap 6
n = 13392 old q 22019 q 22026 ratio 1.658619700318701 gap 7
n = 131965 old q 217069 q 217077 ratio 1.674107764035864 gap 8
n = 664314 old q 1092746 q 1092755 ratio 1.742561268994944 gap 9
n = 5392319 old q 8870023 q 8870033 ratio 1.768248678666427 gap 10
Esta última versión se extiende en https://oeis.org/A020754 y
https://oeis.org/A020754/b020754.txt