$\newcommand{\bbx}[1]{\,\bbox[15px,border:1px groove navy]{\displaystyle{#1}}\,} \newcommand{\braces}[1]{\left\lbrace\,{#1}\,\right\rbrace} \newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack} \newcommand{\dd}{\mathrm{d}} \newcommand{\ds}[1]{\displaystyle{#1}} \newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,} \newcommand{\ic}{\mathrm{i}} \newcommand{\mc}[1]{\mathcal{#1}} \newcommand{\mrm}[1]{\mathrm{#1}} \newcommand{\pars}[1]{\left(\,{#1}\,\right)} \newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}} \newcommand{\root}[2][]{\,\sqrt[#1]{\,{#2}\,}\,} \newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}} \newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$ \begin{align} \lim_{n \to \infty}{\pars{-1}^{n}{-\alpha \choose n} \over n^{\alpha - 1}} & = \lim_{n \to \infty}\bracks{{\pars{-1}^{n} \over n^{\alpha - 1}}\, {\pars{-\alpha}! \over n!\pars{-\alpha - n}!}} = \lim_{n \to \infty}\bracks{{\pars{-1}^{n} \over n^{\alpha - 1}} \,{\Gamma\pars{1 - \alpha} \over \Gamma\pars{n + 1}\,\Gamma\pars{1 -\alpha - n}}} \\[5mm] & = \lim_{n \to \infty}\braces{{\pars{-1}^{n} \over n^{\alpha - 1}\,\Gamma\pars{n + 1}}\, {\pi \over \Gamma\pars{\alpha}\sin\pars{\pi\alpha}}\,{\Gamma\pars{n + \alpha}\sin\pars{\pi\bracks{n + \alpha}} \over \pi}} \\[5mm] & = {1 \over \Gamma\pars{\alpha}}\lim_{n \to \infty}\bracks{{1 \over n^{\alpha - 1}} {\Gamma\pars{n + \alpha} \over \Gamma\pars{n + 1}}} \\[5mm] & = {1 \over \Gamma\pars{\alpha}}\lim_{n \to \infty}\bracks{% {1 \over n^{\alpha -1}}\, {\root{2\pi}\pars{n + \alpha}^{n + \alpha + 1/2}\expo{-n - \alpha} \over \root{2\pi}\pars{n + 1}^{n + 1 + 1/2}\expo{-n - 1}}} \\[5mm] & = {1 \over \Gamma\pars{\alpha}}\lim_{n \to \infty}\bracks{% {1 \over n^{\alpha -1}}\,{n^{n + \alpha + 1/2}\,\pars{1 + \alpha/n}^{n + \alpha + 1/2} \over n^{n + 3/2}\,\pars{1 + 1/n}^{n + 3/2}}\,\expo{1 - \alpha}} \\[5mm] & = {1 \over \Gamma\pars{\alpha}}\lim_{n \to \infty}\bracks{% {\pars{1 + \alpha/n}^{n} \over \pars{1 + 1/n}^{n}}\,\expo{1 - \alpha}} = \bbx{1 \over \Gamma\pars{\alpha}} \end{align}
1 votos
Puedes obtener la expansión de Taylor con el teorema del binomio. Puede que tengas que jugar un poco con él juntando los signos negativos.
1 votos
$a_n=(-1)^n \binom{-\alpha}{n}$