$\newcommand{\+}{^{\dagger}} \newcommand{\angles}[1]{\left\langle\, #1 \,\right\rangle} \newcommand{\braces}[1]{\left\lbrace\, #1 \,\right\rbrace} \newcommand{\bracks}[1]{\left\lbrack\, #1 \,\right\rbrack} \newcommand{\ceil}[1]{\,\left\lceil\, #1 \,\right\rceil\,} \newcommand{\dd}{{\rm d}} \newcommand{\down}{\downarrow} \newcommand{\ds}[1]{\displaystyle{#1}} \newcommand{\expo}[1]{\,{\rm e}^{#1}\,} \newcommand{\fermi}{\,{\rm f}} \newcommand{\floor}[1]{\,\left\lfloor #1 \right\rfloor\,} \newcommand{\half}{{1 \over 2}} \newcommand{\ic}{{\rm i}} \newcommand{\iff}{\Longleftrightarrow} \newcommand{\imp}{\Longrightarrow} \newcommand{\isdiv}{\,\left.\right\vert\,} \newcommand{\ket}[1]{\left\vert #1\right\rangle} \newcommand{\ol}[1]{\overline{#1}} \newcommand{\pars}[1]{\left(\, #1 \,\right)} \newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}} \newcommand{\pp}{{\cal P}} \newcommand{\root}[2][]{\,\sqrt[#1]{\vphantom{\large A}\,#2\,}\,} \newcommand{\sech}{\,{\rm sech}} \newcommand{\sgn}{\,{\rm sgn}} \newcommand{\totald}[3][]{\frac{{\rm d}^{#1} #2}{{\rm d} #3^{#1}}} \newcommand{\ul}[1]{\underline{#1}} \newcommand{\verts}[1]{\left\vert\, #1 \,\right\vert} \newcommand{\wt}[1]{\widetilde{#1}}$ $\ds{\int_{-\infty}^{\infty}\!\!% {\expo{\ic nx} \over \Gamma\pars{\alpha + x}\Gamma\pars{\beta - x}}\,\dd x ={\bracks{2\cos\pars{n/2}}^{\alpha + \beta - 2}\over \Gamma\pars{\alpha + \beta - 1}} \,\expo{\ic n\pars{\beta - \alpha}/2}}$
$\ds{\verts{n} < \pi\,,\ \Re\pars{\alpha + \beta} > 1}$ .
Tenga en cuenta que \begin{align} &{1 \over \Gamma\pars{\alpha + x}\Gamma\pars{\beta - x}} ={1 \over \pars{\alpha + x - 1}!\pars{\beta - x - 1}!} \\[3mm]&={1 \over \Gamma\pars{\alpha + \beta - 1}}\, {\pars{\alpha + \beta - 2}! \over \pars{\alpha + x - 1}!\pars{\beta - x - 1}!} \\[3mm] & ={1 \over \Gamma\pars{\alpha + \beta - 1}}\, {\alpha + \beta - 2 \choose \alpha + x - 1} \end{align}
\begin{align}&\color{#c00000}{% \int_{-\infty}^{\infty}% {\expo{\ic nx} \over \Gamma\pars{\alpha + x}\Gamma\pars{\beta - x}}\,\dd x} \\[5mm] = &\ {1 \over \Gamma\pars{\alpha + \beta - 1}} \color{#00f}{\int_{-\infty}^{\infty} {\alpha + \beta - 2 \choose \alpha + x - 1}\expo{\ic nx}\,\dd x}\tag{1} \end{align}
\begin{align}&\color{#00f}{\int_{-\infty}^{\infty} {\alpha + \beta - 2 \choose \alpha + x - 1}\expo{\ic nx}\,\dd x} =\int_{-\infty}^{\infty}\bracks{\oint_{\verts{z}\ =\ 1}{\pars{1 + z}^{\alpha + \beta - 2} \over z^{\alpha + x}}\,{\dd z \over 2\pi\ic}}\expo{\ic n x}\,\dd x \\[3mm]&=-\ic\oint_{\verts{z}\ =\ 1} {\pars{1 + z}^{\alpha + \beta - 2} \over z^{\alpha}}\braces{% \int_{-\infty}^{\infty}\expo{\ic\bracks{n - {\rm Arg}\pars{z}}x} \,{\dd x \over 2\pi}}\,\dd z \\[3mm]&=-\ic\ \overbrace{\oint_{\verts{z}\ =\ 1}{\pars{1 + z}^{\alpha + \beta - 2} \over z^{\alpha}}\,\delta\pars{n - {\rm Arg}\pars{z}}\,\dd z} ^{\ds{\mbox{Set}\ z \equiv \expo{\ic \theta}\,,\quad\verts{\theta} < \pi}} \\[3mm]&=-\ic\int_{-\pi}^{\pi} {\pars{1 + \expo{\ic\theta}}^{\alpha + \beta - 2} \over \expo{\ic\alpha\theta}}\,\delta\pars{n - \theta}\,\expo{\ic\theta}\ic\,\dd\theta =\pars{1 + \expo{\ic n}}^{\alpha + \beta - 2}\expo{\ic\pars{1 - \alpha}n} \\[3mm]&=\expo{\ic\pars{\alpha + \beta - 2}n/2} \pars{\expo{-\ic n/2} + \expo{\ic n/2}}^{\alpha + \beta - 2} \expo{\ic\pars{1 - \alpha}n} \\[3mm] & = \bracks{2\cos\pars{{n \over 2}}}^{\alpha + \beta - 2} \expo{\ic\pars{\beta - \alpha}n/2} \end{align}
$$ \color{#00f}{\int_{-\infty}^{\infty} {\alpha + \beta - 2 \choose \alpha + x - 1}\expo{\ic nx}\,\dd x} =\bracks{2\cos\pars{n \over 2}}^{\alpha + \beta - 2} \expo{\ic\pars{\beta - \alpha}n/2} $$
Sustituir este resultado en $\pars{1}$ : \begin{align} &\color{#66f}{\large% \int_{-\infty}^{\infty}\!\!% {\expo{\ic nx} \over \Gamma\pars{\alpha + x}\Gamma\pars{\beta - x}}\,\dd x} \\[5mm] = &\ {\bracks{2\cos\pars{n/2}}^{\alpha + \beta - 2}\over \Gamma\pars{\alpha + \beta - 1}}\,\expo{\ic n\pars{\beta - \alpha}/2} \end{align}
1 votos
Sólo un comentario en realidad. Ramanujan deduce varias ecuaciones muy similares en el cap. 27 de Collected works. Creo que puedes derivar tu integral a partir de la ec. (7.11). Si tengo tiempo, intentaré resolverlo y publicarlo como respuesta.
0 votos
@daniel: Intentaré encontrar el libro que has sugerido.