Demostrar mediante Inducción Matemática que para todos los números naturales ( $n>0$ ):
$$ \frac 1 {\sqrt{1}} + \frac 1 {\sqrt{2}} + \cdots + \frac 1 {\sqrt{n}} \ge \sqrt{n}. $$
Proof by Induction:
Let P(n) denote 1/ 1 + 1/ 2 + … + 1/ n n
Base Case: n = 1, P(1) = 1/1 1
The base cases holds true for this case since the inequality for P(1) holds true.
Inductive Hypothesis: For every n = k > 0 for some integer k
P(k) = 1/ 1 + 1/ 2 + … + 1/ k k, p(k) holds true for any integer k
Inductive Step:
P(k + 1)) = 1/ 1 + 1/ 2 + … + 1/ k + 1/ (k + 1) k + (k+1)
k + (k+1) > (k+1) (this is where I got stuck)