$$I=\frac { 1 }{ 4 } \int _{ 0 }^{ 1 } t^{ \frac { -3 }{ 4 } }(1-t)^{ \frac { 1 }{ 2 } }dt$$
Ahora, sobre el uso de Beta de la función, obtenemos $$I=\frac { 1 }{ 4 } B\left( \frac { 1 }{ 4 } ,\frac { 3 }{ 2 } \right) $$
Ahora, usamos la relación de la Beta y gamma de la función. $$I=\frac { 1 }{ 4 } \frac { \Gamma \left( \frac { 1 }{ 4 } \right) \Gamma \left( \frac { 3 }{ 2 } \right) }{ \Gamma \left( \frac { 7 }{ 4 } \right) } $$
Ahora, utilizamos la fórmula: $\Gamma \left( n+1 \right) =n\Gamma \left( n \right) $
$$I=\frac { 1 }{ 4 } \frac { \Gamma \left( \frac { 1 }{ 4 } \right) \Gamma \left( \frac { 1 }{ 2 } \right) \times \frac { 1 }{ 2 } }{ \frac { 3 }{ 4 } \Gamma \left( \frac { 3 }{ 4 } \right) } $$
Utilizamos este valor: $\Gamma \left( \frac { 1 }{ 2 } \right) =\sqrt { \pi } $
$$I=\frac { \sqrt { \pi } }{ 6 } \frac { \Gamma \left( \frac { 1 }{ 4 } \right) }{ \Gamma \left( \frac { 3 }{ 4 } \right) } $$
$$I=\frac { \sqrt { \pi } }{ 6 } \frac { { \left( \Gamma \left( \frac { 1 }{ 4 } \right) \right) }^{ 2 } }{ \Gamma \left( \frac { 1 }{ 4 } \right) \Gamma \left( \frac { 3 }{ 4 } \right) } $$
Ahora, por Euler Reflexión de la Fórmula, obtenemos $$I=\frac { \sqrt { \pi } }{ 6 } \frac { { \left( \Gamma \left( \frac { 1 }{ 4 } \right) \right) }^{ 2 } }{ \frac { \pi }{ \sin { \left( \frac { \pi }{ 4 } \right) } } } $$
$$\boxed{\therefore \int _{ 0 }^{ 1 }{ \sqrt { 1-x^{ 4 } } dx } =\frac { 1 }{ 12 } \sqrt { \frac { 2 }{ \pi } } { \left( \Gamma \left( \frac { 1 }{ 4 } \right) \right) }^{ 2 }}$$