$$\sqrt{x}+y=4\tag{A}$$
$$x+\sqrt{y}=6\tag{B}$$
Restando A de B, tenemos
$$x-y -\sqrt{x}+\sqrt{y}=2$$
$$(\sqrt{x}-\sqrt{y})(\sqrt{x}+\sqrt{y}-1)=2$$
$$(\sqrt{x}-\sqrt{y})(\sqrt{x}+\sqrt{y}-1)=(\sqrt{2})(\sqrt{2})$$
Ahora tenemos,
$$\sqrt{x}-\sqrt{y}=\sqrt{2}\tag{AA}$$
$$\sqrt{x}+\sqrt{y}-1=\sqrt{2}\tag{BB}$$
Esto nos da,
$$\sqrt{x}=\sqrt{2}+\frac{1}{2}$$
$$\sqrt{y}=\frac{1}{2}$$