Diferenciar $f(x)=\frac{\cos^{-1}\frac{x}{2}}{\sqrt{2x+7}}$, $-2<x<2$
Mi Intento $$ \begin{align} f'(x)&=\frac{\sqrt{2x+7}\frac{d}{dx}\cos^{-1}\big(\frac{x}{2}\big)-\cos^{-1}\big(\frac{x}{2}\big)\frac{d}{dx}\sqrt{2x+7}}{(\sqrt{2x+7})^2}\\ &=\frac{\sqrt{2x+7}\frac{\frac{-1}{2}}{\sqrt{1-\frac{x^2}{4}}}-\cos^{-1}\big(\frac{x}{2}\big)\frac{2}{2\sqrt{2x+7}}}{(\sqrt{2x+7})^2}\\ &=\frac{\frac{-\sqrt{2x+7}.\sqrt{4}}{2\sqrt{4-x^2}}-\frac{\cos^{-1}\big(\frac{x}{2}\big)}{\sqrt{2x+7}}}{2x+7}\\ &=\frac{\pm2}{2.\sqrt{2x+7}\sqrt{4-x^2}}-\frac{\cos^{-1}\big(\frac{x}{2}\big)}{(2x+7)^{3/2}}\\ &\color{blue}{=\frac{\pm1}{\sqrt{2x+7}\sqrt{4-x^2}}-\frac{\cos^{-1}\big(\frac{x}{2}\big)}{(2x+7)^{3/2}}\\} \end{align} $$ Resultado por Mathematica
D[(ArcCos[x/2]/Sqrt[2 x + 7]),x]
$$ f'(x)={\frac{-1}{\sqrt{2-x}\sqrt{2+x}\sqrt{7+2x}}-\frac{\arccos\big(\frac{x}{2}\big)}{(7+2x)^{3/2}}}\\ \color{blue}{=\frac{-1}{\sqrt{2x+7}\sqrt{4-x^2}}-\frac{\cos^{-1}\big(\frac{x}{2}\big)}{(2x+7)^{3/2}}\\} $$
Mathematica seems to use only the principal root, ie. $\sqrt{4}=+2$, pero en ese caso puedo decir que la solución dada es incompleta ?
O hay cualquier otro dominio o rango de consideraciones que eliminar el otro caso ?
Respuesta
¿Demasiados anuncios?$\sqrt{4}=|2|=+2$ en la línea $3-5$ de su solución
Edición (Después de OP editado la pregunta):
El derivativeof $\arccos(x)$ a $\frac{-1}{\sqrt{1-x^2}}$, donde debemos tomar el signo positivo, de modo que la derivada siempre tiene signo negativo (de lo Contrario, ¿por qué molestarse con el signo de menos, también?). Por eso, $\frac{d}{dx}\arccos(x/2)= \frac{-1/2}{\sqrt{1-x^2/4}}$.Como se puede ver, el $\sqrt{4}$ causando todos los problemas para que se origina a partir de aquí, y como dije solo debemos tomar la raíz cuadrada positiva, debido a que la derivada requiere.