Otra idea es diferenciar bajo el signo integral para matar el logaritmo. Mediante la inserción de un parámetro , se $\alpha$ , y luego se diferencian bajo el signo integral, tenemos que , si definimos
$$f\left ( \alpha \right ) = \int_{0}^{1} \frac{1-x^\alpha}{\log x} \sum_{n=0}^{\infty} x^{2^n} \, {\rm d}x \quad , \quad \alpha \geq 0$$
entonces
\begin{align*}
\frac{\mathrm{d} }{\mathrm{d} \alpha} f(\alpha) &= \int_{0}^{1} \frac{\partial }{\partial \alpha} \frac{1-x^\alpha}{\log x} \sum_{n=0}^{\infty} x^{2^n} \, {\rm d}x \\ &=-\int_{0}^{1} x^\alpha \sum_{n=0}^{\infty} x^{2^n} \, {\rm d}x \\ &= -\sum_{n=0}^{\infty} \int_{0}^{1} x^{2^n} x^\alpha \, {\rm d}x\\ &= -\sum_{n=0}^{\infty} \int_{0}^{1} x^{2^n +\alpha} \, {\rm d}x \\ &=- \sum_{n=0}^{\infty} \frac{1}{\alpha +2^n +1}
\end{align*}
Mientras que usted no puede encontrar una forma general para la derivada ( al menos no sin funciones especiales de todos modos ) , al menos puede evaluar la integral original. Cómo, usted puede pedir? Acaba de integrar de$0$$1$, así:
$$f(1)=\int_0^1 f'(\alpha) \, {\rm d}\alpha$$
Por lo tanto,
\begin{align*}
f(1) &= \int_{0}^{1} f'(\alpha) \, {\rm d}\alpha \\ &= -\sum_{n=0}^{\infty} \int_{0}^{1} \frac{{\rm d}\alpha}{\alpha +2^n +1}\\ &= -\sum_{n=0}^{\infty} \log \left ( \frac{2^n +2}{2^n +1} \right )\\ &= - \lim_{N \rightarrow +\infty} \sum_{n=0}^{N} \log \left ( \frac{2^n +2}{2^n +1} \right ) \\ &= - \lim_{N \rightarrow +\infty} \log \left ( \frac{3 \cdot 2^N}{2^N +1} \right ) \\ &= - \log 3
\end{align*}