$\newcommand{\bbx}[1]{\,\bbox[8px,border:1px groove navy]{\displaystyle{#1}}\,} \newcommand{\braces}[1]{\left\lbrace\,{#1}\,\right\rbrace} \newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack} \newcommand{\dd}{\mathrm{d}} \newcommand{\ds}[1]{\displaystyle{#1}} \newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,} \newcommand{\ic}{\mathrm{i}} \newcommand{\mc}[1]{\mathcal{#1}} \newcommand{\mrm}[1]{\mathrm{#1}} \newcommand{\pars}[1]{\left(\,{#1}\,\right)} \newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}} \newcommand{\root}[2][]{\,\sqrt[#1]{\,{#2}\,}\,} \newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}} \newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$
Con $\ds{\Re\pars{m} \in \pars{0,1}}$ :
$\large\left. 1\right)$ \begin{align} \int_{0}^{\infty}{y^{m - 1} \over 1 + y}\,\dd y & = \int_{0}^{\infty}y^{m - 1}\ \overbrace{\int_{0}^{\infty}\expo{-\pars{1 + y}x}\,\dd x}^{\ds{1 \over 1 + y}}\ \,\dd y = \int_{0}^{\infty}\expo{-x}\ \overbrace{\int_{0}^{\infty}y^{m - 1}\expo{-xy}\dd y} ^{\ds{x^{-m}\,\Gamma\pars{m}}}\ \,\dd x \\[5mm] & = \Gamma\pars{m}\int_{0}^{\infty}x^{-m}\expo{-x}\,\dd x = \bbx{\ds{\Gamma\pars{m}\Gamma\pars{-m + 1} = {\pi \over \sin\pars{\pi m}}}} \end{align}
$\large\left. 2\right)$ Voy a considerar la $\ds{z^{m - 1}}$ rama cortada a lo largo de $\ds{\left[0,\infty\right)}$ con $\ds{0 < \,\mrm{arg}\pars{z} < 2\pi}$ . La integral tiene un solo polo en $\ds{\expo{\pi\ic}}$ . Las contribuciones de un arco pequeño alrededor del origen y de un arco grande desaparecen cuando se toman los límites "habituales":
\begin{align} \color{#88f}{\int_{0}^{\infty}{y^{m - 1} \over 1 + y}\,\dd y} & = 2\pi\ic\pars{\expo{\pi\ic}}^{m - 1} - \int_{\infty}^{0}{y^{m - 1}\expo{2\pars{m - 1}\pi\ic} \over 1 + y}\,\dd y = -2\pi\ic\expo{m\pi\ic} + \expo{2m\pi\ic}\color{#88f}{\int_{0}^{\infty}{y^{m - 1} \over 1 + y}\,\dd y} \\[5mm] \int_{0}^{\infty}{y^{m - 1} \over 1 + y}\,\dd y & = -\,{2\pi\ic\expo{m\pi\ic} \over 1 - \expo{2m\pi\ic}} = {2\pi\ic \over \expo{m\pi\ic} - \expo{-m\pi\ic}} = {2\pi\ic \over 2\ic\sin\pars{\pi m}} = \bbx{\ds{{\pi \over \sin\pars{\pi m}}}} \end{align}
$\large\left. 3\right)$ ${\large The\ 'weird'\ one\ !!!}$ \begin{align} &\int_{0}^{\infty}{y^{m - 1} \over 1 + y}\,\dd y = \int_{0}^{1}{y^{m - 1} \over 1 + y}\,\dd y + \int_{1}^{\infty}{y^{m - 1} \over 1 + y}\,\dd y = \int_{0}^{1}{y^{m - 1} \over 1 + y}\,\dd y - \int_{1}^{0}{y^{-m} \over 1 + y}\,\dd y \\[5mm] = &\ \int_{0}^{1}{y^{m - 1} + y^{-m} \over 1 + y}\,\dd y = \int_{0}^{1}{y^{m - 1} + y^{-m} - y^{m} - y^{-m + 1} \over 1 - y^{2}}\,\dd y \\[5mm] = &\ {1 \over 2}\int_{0}^{1}{y^{m/2 - 1} + y^{-m/2 - 1/2} - y^{m/2 - 1/2} - y^{-m/2} \over 1 - y}\,\dd y \\[5mm] = &\ {1 \over 2}\bracks{% -\int_{0}^{1}{1 - y^{m/2 - 1} \over 1 - y}\,\dd y - \int_{0}^{1}{1 - y^{-m/2 - 1/2} \over 1 - y}\,\dd y + \int_{0}^{1}{1 - y^{m/2 - 1/2} \over 1 - y}\,\dd y + \int_{0}^{1}{1 - y^{-m/2} \over 1 - y}\,\dd y} \\[5mm] = &\ {1 \over 2}\bracks{% -\Psi\pars{m \over 2} - \Psi\pars{-\,{m \over 2} + {1 \over 2}} + \Psi\pars{{m \over 2} + {1 \over 2}} + \Psi\pars{-\,{m \over 2} + 1}} \\[5mm] & = {1 \over 2}\bracks{\Psi\pars{1 - {m \over 2}} - \Psi\pars{m \over 2}} - {1 \over 2}\braces{\Psi\pars{1 - \bracks{{m \over 2} + {1 \over 2}}} - \Psi\pars{{m \over 2} + {1 \over 2}}} \\[5mm] & = {1 \over 2}\,\pi\cot\pars{\pi\,{m \over 2}} - {1 \over 2}\,\pi\cot\pars{\pi\,\bracks{{m \over 2} + {1 \over 2}}} = {1 \over 2}\,\pi\bracks{\cot\pars{\pi\,{m \over 2}} + \tan\pars{\pi\,{m \over 2}}} \\[5mm] & = {1 \over 2}\,\pi\,{\cos^{2}\pars{\pi m/2} + \sin^{2}\pars{\pi m/2} \over \sin\pars{\pi m/2}\cos\pars{\pi m/2}} = \bbx{\ds{\pi \over \sin\pars{\pi m}}} \end{align}
0 votos
Si $m\ge 0$ esta integral no converge
1 votos
Usted ha escrito $y^m-1$ mientras que en tu solución has utilizado $y^{m-1}$ .
0 votos
@user109899 Gracias por detectarlo, lo he arreglado :)
0 votos
Observe también que $$B(m,1-m)=\Gamma(m)\Gamma(\color{red}{1-m})=\frac{\pi}{\sin(\pi m)}.$$