He intentado $a=1, n=2$ ...
En realidad lo hacen de acuerdo (bueno, difieren por una constante) de$0$$\pi$.
así que tal vez hay alguna restricción en la fórmula?
agregó
Por extraño $n$, que hypergeom es un polinomio. Pero no para, incluso,$n$. Por diversión que amplió el caso de $n=2$...
$$
-\cos \left( x \right) +\frac{\left( \cos \left( x
\right) \right) ^{3}}{6}+\frac{\left( \cos \left( x \right) \right) ^{
5}}{40}+{\frac { \left( \cos \left( x \right) \right) ^{7}}{112}}+{\frac {
5\, \left( \cos \left( x \right) \right) ^{9}}{1152}}+{\frac {7\,
\left( \cos \left( x \right) \right) ^{11}}{2816}}
+{\frac {21\, \left( \cos \left( x \right) \right) ^{13}}{13312}}+{
\frac {11\, \left( \cos \left( x \right) \right) ^{15}}{10240}}+{
\frac {429\, \left( \cos \left( x \right) \right) ^{17}}{557056}}+{
\frac {715\, \left( \cos \left( x \right) \right) ^{19}}{1245184}}+{
\frac {2431\, \left( \cos \left( x \right) \right) ^{21}}{5505024}}+{
\frac {4199\, \left( \cos \left( x \right) \right) ^{23}}{12058624}}+
{\frac {29393\, \left( \cos \left( x \right) \right) ^{25}}{104857600
}}+{\frac {52003\, \left( \cos \left( x \right) \right) ^{27}}{
226492416}}+{\frac {185725\, \left( \cos \left( x \right) \right) ^{
29}}{973078528}}+{\frac {334305\, \left( \cos \left( x \right)
\right) ^{31}}{2080374784}}+{\frac {3231615\, \left( \cos \left( x
\right) \right) ^{33}}{23622320128}}+{\frac {3535767\, \left( \cos
\left( x \right) \right) ^{35}}{30064771072}}+{\frac {64822395\,
\left( \cos \left( x \right) \right) ^{37}}{635655159808}}+{\frac {
39803225\, \left( \cos \left( x \right) \right) ^{39}}{446676598784}}
+{\frac {883631595\, \left( \cos \left( x \right) \right) ^{41}}{
11269994184704}}+{\frac {1641030105\, \left( \cos \left( x \right)
\right) ^{43}}{23639499997184}}+{\frac {407771117\, \left( \cos
\left( x \right) \right) ^{45}}{6597069766656}}+{\frac {11435320455
\, \left( \cos \left( x \right) \right) ^{47}}{206708186021888}}+{
\frac {171529806825\, \left( \cos \left( x \right) \right) ^{49}}{
3448068464705536}}+\dots
$$