Dejemos que $b,c,d\in\mathbb{R}$ sean constantes con $b\neq d$ . Dejemos que $$\begin{eqnarray} a_{n} &=& ba_{n-1}+cd^{n-1} \end{eqnarray}$$ sea una secuencia para $n \geq 1$ con $a_{0}=0$ . Quiero encontrar un fórmula cerrada para esta recursión. (Sólo conozco el término alemán geschlossene Formel y lo traduje de esa manera me pareció que podía ser correcto. Así que si me equivoqué, por favor corríjanme)
Primero escribí algunas de las cadenas y obtuve $$\begin{eqnarray} a_{n} &=& ba_{n-1}+cd^{n-1}\\ &=& b\left(ba_{n-2}+cd^{n-2}\right)+cd^{n-1}\\ &=& b\left(b\left(ba_{n-3}+cd^{n-3}\right)+cd^{n-2}\right)+cd^{n-1}\\ &=& b\left(b\left(b\left(ba_{n-4}+cd^{n-4}\right)+cd^{n-3}\right)+cd^{n-2}\right)+cd^{n-1}\\ &=& \dots\\ &=& \sum_{k=0}^{n}b^{k}cd^{n-k-1}\\ &=& \sum_{k=0}^{n}b^{k}cd^{n-\left(k+1\right)} \end{eqnarray}$$
Así que cogí la estructura en una serie. Ahora me pregunto cómo proceder. Me tomé la libertad de echar un vistazo a lo que WolframAlpha madera dicen a esta serie. Esperaba que me inspirara y lo conseguí
$$\sum_{k=0}^{n-1}b^{k} c d^{n-(k+1)} = (c (b^n-d^n))/(b-d)$$
¿Cómo se ha llegado a esto? Y lo más importante: ¿es útil mi enfoque? Gracias de antemano por cualquier consejo.
Edición: Mi solución final (recalculada)
$$\begin{eqnarray} a_{n} &=& ba_{n-1}+cd^{n-1}\\ &=& b\left(ba_{n-2}+cd^{n-2}\right)+cd^{n-1}\\ &=& b\left(b\left(ba_{n-3}+cd^{n-3}\right)+cd^{n-2}\right)+cd^{n-1}\\ &=& b\left(b\left(b\left(ba_{n-4}+cd^{n-4}\right)+cd^{n-3}\right)+cd^{n-2}\right)+cd^{n-1}\\ &=& b^{4}a_{n-4}+b^{3}cd^{n-4}+b^{2}cd^{n-3}+bcd^{n-2}+cd^{n-1}\\ &=& b^{5}a_{n-5}+b^{4}cd^{n-5}+b^{3}cd^{n-4}+b^{2}cd^{n-3}+bcd^{n-2}+cd^{n-1}\\ &=& b^{n}a_{0}+b^{n-1}c+\dots+b^{4}cd^{n-5}+b^{3}cd^{n-4}+b^{2}cd^{n-3}+cbd^{n-2}+cd^{n-1}\\ &=& \dots\\ &=& 0+b^{n-1}c+\dots+b^{4}cd^{n-5}+b^{3}cd^{n-4}+b^{2}cd^{n-3}+cbd^{n-2}+cd^{n-1}\\ &=& \sum_{k=0}^{n-1}b^{k}cd^{n-1-k}\\ &=& cd^{n-1}\sum_{k=0}^{n-1}b^{k}d^{-k}\\ &=& cd^{n-1}\sum_{k=0}^{n-1}\left(\frac{b}{d}\right)^{k}\\ &=& cd^{n-1}\frac{1-\left(\frac{b}{d}\right)^{n}}{1-\left(\frac{b}{d}\right)}\\ &=& cd^{n-1}\frac{1-\frac{b^{n}}{d^{n}}}{1-\frac{b}{d}}\\ &=& cd^{n-1}\frac{\frac{d^{n}-b^{n}}{d^{n}}}{\frac{d-b}{d}}\\ &=& cd^{n-1}\frac{d^{n}-b^{n}}{d^{n}}\cdot\frac{d}{d-b}\\ &=& \frac{c\left(d^{n}-b^{n}\right)}{d-b} \end{eqnarray}$$