Encontrar $u=u(x,y)$ satisfacción $$\dfrac{\partial^2 u}{\partial x^2} = 6xy, \,\,\,u(0,y) = y, \,\,\,\dfrac{\partial u}{\partial x}(1,y)=0.$ $
He tratado por laplace transformación $$ \displaystyle s ^ 2\bar {u}(s,y)-su(0,y)-\frac {\partial u} {\partial x}(0,y) = \frac{6y}{s^2} \,\,\,\Longrightarrow\,\,\, \bar{u}(s,y) = sy + \frac {6y} {s ^ 2} + \frac {\partial u} {\partial x}(0,y). $$
Por favor dígame cómo proceder.