$f^{-1}\left(0\right)$ tiene un número finito de elementos que vamos a decir $(x_1,y_1),(x_2,y_2),\ldots,(x_N,y_N)$.
Deje $$R=\frac{1}{3}\min_{1\leq i < j\leq N}\sqrt{\left(x_j-x_i\right)^2+\left(y_j-y_i\right)^2}$$
y $$B_k=\{(x,y):\sqrt{(x-x_k)^2+(y-y_k)^2}<R\}\quad\text{for}\;k=1,2, \ldots,N$$
De ello se desprende $f$ se desvanece en$(x_k,y_k)$, y para ningún otro punto de $B_k$. Desde $f$ es continua $f$ tienen el mismo signo para todos los $(x,y)\in B_k\backslash(x_k,y_k)$.
Supongamos que hay dos puntos de $(x_a,y_a)\in B_a$ $(x_c,y_c)\in B_c$ tal que $f(x_a,y_a)$ $f(x_c,y_c)$ tiene signo contrario, vamos a decir $f(x_a,y_a)<0<f(x_c,y_c)$. Deje $g:[0,1]\longrightarrow \mathbb{R}$ sea la función definida por $$g(t)=f(tx_c+(1-t)x_a,ty_c+(1-t)y_a)$$ $g$ is a continuous function, Mean Value Theorem implies there is $t_0\en [0,1]$ with $g(t)<0$ for $t<t_0$ (in some neighborhood around $t_0$) and $g(t)>0$ for $t>t_0$ (in some neighborhood around $t_0$). Then $f$ vanishes at $(t_0x_c+(1-t_0)x_a,t_0y_c+(1-t_0)y_a)$ and this point is not in $\{(x_1,y_1),(x_2,y_2),\ldots,(x_N,y_N)\}$. Hence $f$ have the same sign for all $(x,y)\en B_k\barra invertida(x_k,y_k)$ for $k=1,2,\ldots,N$.
Por la continuidad de $f$ llegamos a la conclusión de $f$ tiene el mismo signo para todos los $(x,y)\in\mathbb{R}^2\backslash f^{-1}\left(0\right)$.