Caso $1$: $t\geq0$
Deje $\varphi(x,t)=X(x)T(t)$ ,
A continuación, $X(x)T'(t)=X''(x)T(t)$
$\dfrac{T'(t)}{T(t)}=\dfrac{X''(x)}{X(x)}=-s^2$
$\begin{cases}\dfrac{T'(t)}{T(t)}=-s^2\\X''(x)+s^2X(x)=0\end{cases}$
$\begin{cases}T(t)=c_3(s)e^{-ts^2}\\X(x)=\begin{cases}c_1(s)\sin xs+c_2(s)\cos xs&\text{when}~s\neq0\\c_1x+c_2&\text{when}~s=0\end{cases}\end{cases}$
$\therefore\varphi(x,t)=\int_0^\infty C_1(s)e^{-ts^2}\sin xs~ds+\int_0^\infty C_2(s)e^{-ts^2}\cos xs~ds$
Caso $2$: $t\leq0$
Deje $\varphi(x,t)=X(x)T(t)$ ,
A continuación, $X(x)T'(t)=X''(x)T(t)$
$\dfrac{T'(t)}{T(t)}=\dfrac{X''(x)}{X(x)}=s^2$
$\begin{cases}\dfrac{T'(t)}{T(t)}=s^2\\X''(x)-s^2X(x)=0\end{cases}$
$\begin{cases}T(t)=c_3(s)e^{ts^2}\\X(x)=\begin{cases}c_1(s)\sinh xs+c_2(s)\cosh xs&\text{when}~s\neq0\\c_1x+c_2&\text{when}~s=0\end{cases}\end{cases}$
$\therefore\varphi(x,t)=\int_0^\infty C_1(s)e^{ts^2}\sinh xs~ds+\int_0^\infty C_2(s)e^{ts^2}\cosh xs~ds$
Por lo tanto $\varphi(x,t)=\begin{cases}\int_0^\infty C_1(s)e^{-ts^2}\sin xs~ds+\int_0^\infty C_2(s)e^{-ts^2}\cos xs~ds&\text{when}~t\geq0\\\int_0^\infty C_1(s)e^{ts^2}\sinh xs~ds+\int_0^\infty C_2(s)e^{ts^2}\cosh xs~ds&\text{when}~t\leq0\end{cases}$
Tenga en cuenta que en esta pregunta nosotros sólo nos preocupamos de $x\in\mathbb{R}$ . Desde $\sin xs=-\sin(-xs)$ , $\cos xs=\cos(-xs)$ , $\sinh xs=-\sinh(-xs)$ y $\cosh xs=\cosh(-xs)$ , $\varphi(x,t)$ tiene forma alternativa de la solución:
$\varphi(x,t)=\begin{cases}\int_0^\infty C_1(s)e^{-ts^2}\sin|x|s~ds+\int_0^\infty C_2(s)e^{-ts^2}\cos|x|s~ds&\text{when}~t\geq0\\\int_0^\infty C_1(s)e^{ts^2}\sinh|x|s~ds+\int_0^\infty C_2(s)e^{ts^2}\cosh |x|s~ds&\text{when}~t\leq0\end{cases}$
Desde $\lim\limits_{x\to\pm\infty}\sin|x|s$ , $\lim\limits_{x\to\pm\infty}\cos|x|s$ , $\lim\limits_{x\to\pm\infty}\sinh|x|s$ y $\lim\limits_{x\to\pm\infty}\cosh|x|s$ no existen, no podemos determinar directamente si $\lim\limits_{x\to\pm\infty}\varphi(x,t)=0$ mantiene o no.
Sin embargo, cuando hacemos un cambio de variables:
$\varphi(x,t)=\begin{cases}\int_0^\infty C_1\biggl(\dfrac{s}{|x|}\biggr)e^{-t\left(\frac{s}{|x|}\right)^2}\sin s~d\biggl(\dfrac{s}{|x|}\biggr)+\int_0^\infty C_2\biggl(\dfrac{s}{|x|}\biggr)e^{-t\left(\frac{s}{|x|}\right)^2}\cos s~d\biggl(\dfrac{s}{|x|}\biggr)&\text{when}~t\geq0\\\int_0^\infty C_1\biggl(\dfrac{s}{|x|}\biggr)e^{t\left(\frac{s}{|x|}\right)^2}\sinh s~d\biggl(\dfrac{s}{|x|}\biggr)+\int_0^\infty C_2\biggl(\dfrac{s}{|x|}\biggr)e^{t\left(\frac{s}{|x|}\right)^2}\cosh s~d\biggl(\dfrac{s}{|x|}\biggr)&\text{when}~t\leq0\end{cases}$
$\varphi(x,t)=\begin{cases}\int_0^\infty C_1\biggl(\dfrac{s}{|x|}\biggr)\dfrac{e^{-\frac{ts^2}{x^2}}\sin s}{|x|}ds+\int_0^\infty C_2\biggl(\dfrac{s}{|x|}\biggr)\dfrac{e^{-\frac{ts^2}{x^2}}\cos s}{|x|}ds&\text{when}~t\geq0\\\int_0^\infty C_1\biggl(\dfrac{s}{|x|}\biggr)\dfrac{e^{\frac{ts^2}{x^2}}\sinh s}{|x|}ds+\int_0^\infty C_2\biggl(\dfrac{s}{|x|}\biggr)\dfrac{e^{\frac{ts^2}{x^2}}\cosh s}{|x|}ds&\text{when}~t\leq0\end{cases}$
Desde $\lim\limits_{x\to\pm\infty}\dfrac{e^{-\frac{ts^2}{x^2}}}{|x|}=0$$\lim\limits_{x\to\pm\infty}\dfrac{e^{\frac{ts^2}{x^2}}}{|x|}=0$ ,
$\therefore\varphi(x,t)=\begin{cases}\int_0^\infty C_1(s)e^{-ts^2}\sin|x|s~ds+\int_0^\infty C_2(s)e^{-ts^2}\cos|x|s~ds&\text{when}~t\geq0\\\int_0^\infty C_1(s)e^{ts^2}\sinh|x|s~ds+\int_0^\infty C_2(s)e^{ts^2}\cosh |x|s~ds&\text{when}~t\leq0\end{cases}$ automáticamente satisflies $\lim\limits_{x\to\pm\infty}\varphi(x,t)=0$ .
El problema es cómo sustituir los $\varphi(x,0)=f_0(x)$ a eliminar muy bien en algunas de las $C_1(s)$$C_2(s)$ .