Deje $N(a,b)$ denotar el número de enteros $x$ entre $1,2,\ldots,p-2$ tal que $(x|p)=a$$(x+1|p)=b$. Deje $0<x<p-1$. Tenga en cuenta que si $a=(x|p)$ $1+a\cdot (x|p)=2$ e si $a\neq (x|p)$$1+a\cdot (x|p)=0$. Esto dice $$ \Bigl[1+a\cdot (x|p)\Bigr] \cdot \Bigl[1+b\cdot(x+1|p)\Bigr]=\begin{cases} 4 & \mbox{if $a=(x|p)$ and $b=(x+1|p)$} \\ 0 & \mbox{otherwise}.\end{cases}$$ This says $$4 \cdot N(a,b)=\sum_{x=1}^{p-2}\Bigl[1+a(x|p)\Bigr] \cdot \Bigl[1+b(x+1|p)\Bigr]$$ Expanding and evaluating you get $$4\cdot N(a,b)=p-2-a(-1|p)-b+ab\sum_{x=1}^{p-2}(x^2+x|p)$$
Poner $a=b=1$, debido a que desea $x$ $x+1$ tanto para ser residuos cuadráticos. A continuación, obtenemos $$N(1,1)= \frac{1}{4}\cdot \left[p-2-(-1)^{p-1/2}-1+\sum_{x=1}^{p-2}(x^{2}+x|p)\right]$$ Now note that $\sum_{x=1}^{p-2} x^{2}+x|p)=-1$, Therefore $$N(1,1)=\frac{p-4-(1)^{p-1/2}}{4}$$