Así que yo era el estudio de las cadenas de Markov y me encontré con esta matriz \begin{align*}P=\left( \begin{array}{ccccc} 0 & \frac{1}{4} & \frac{3}{4} & 0 & 0\\ \frac{1}{4} & 0 & 0 & \frac{1}{4} & \frac{1}{2}\\ \frac{1}{2} & 0 & 0 & \frac{1}{4}& \frac{1}{4}\\ 0 & \frac{1}{4} & \frac{3}{4} & 0& 0\\ 0 & \frac{1}{4} & \frac{3}{4} & 0& 0\\ \end{array} \right).\end{align*}
Me di cuenta (por fuerza bruta), que \begin{align*}P^2=\left( \begin{array}{ccccc} \frac{7}{16} & 0 & 0 & \frac{1}{4} & \frac{5}{16}\\ 0 & \frac{1}{4} & \frac{3}{4} & 0& 0\\ 0 & \frac{1}{4} & \frac{3}{4} & 0& 0\\ \frac{3}{8} & 0 & 0 & \frac{1}{4}& \frac{1}{2}\\ \frac{7}{16} & 0 & 0 & \frac{1}{4} & \frac{5}{16}\\ \end{array} \right)\end{align*} y \begin{align*}P^3=\left( \begin{array}{ccccc} 0 & \frac{1}{4} & \frac{3}{4} & 0& 0\\ \frac{7}{16} & 0 & 0 & \frac{1}{4} & \frac{5}{16}\\ \frac{7}{16} & 0 & 0 & \frac{1}{4} & \frac{5}{16}\\ 0 & \frac{1}{4} & \frac{3}{4} & 0& 0\\ 0 & \frac{1}{4} & \frac{3}{4} & 0& 0\\ \end{array} \right).\end{align*}
De hecho, el uso de un ordenador he encontrado que cada poder toma la forma de la $P^2$ matriz y cada una de las extraño poder toma la forma de la $P^3$ matriz.
Yo sólo quería saber por qué esa oscilación se produce? Hay un nombre especial para el tipo de matriz que $P$ es para exhibir ese tipo de comportamiento?