4 votos

Cómo calcular la integral de esta fracción

Así que tengo esta bastante complicado fracción, y estoy tratando de encontrar a su antiderivada.

$$ \int \frac{7xe^{2x}}{(1+2x)^2} dx $$

No estoy seguro de por dónde empezar. Yo estaba pensando usando integración por partes, pero luego he intentado sustituirlo con $u$'s:

$$ u = 1+2x, du = 2 dx \dx=\frac{du}{2} \\ = \int \frac{\frac{7-7}{2}e^{- u 1}}{u^2}\color{red}{\frac{ du}{2} }\\ = \frac{7}{4}\int \frac{e^{u-1}}{u} du - \frac{7}{4}\int \frac{e^{u-1}}{u^2} du $$

Pero ahora estoy atascado y no puedo ir más allá. Puede alguien por favor me guía a través de esta problemática de la integración? Gracias!

11voto

Aoeuid Puntos 318

$$ = \frac{7e^{-1}}{4}\bigg\{\color{red}{\int \frac{e^{u}}{u} du} - \int \frac{e^{u}}{u^2} du\bigg\}\\ = \frac{7e^{-1}}{4}\bigg\{\color{red}{\frac{e^{u}}{u}-\int \frac{-e^{u}}{u^2} du }- \int \frac{e^{u}}{u^2} du+c\bigg\}\ \text{integración por partes}\\ =\frac{7e^{-1}}{4}\frac{e^{u}}{u}+c =\frac{7e^{u-1}}{4u}+c =\frac{7e^{2x+1-1}}{4(2x+1)}+c =\frac{7e^{2x}}{4(2x+1)}+c $$

5voto

heropup Puntos 29437

En primer lugar, vamos a sacar el factor constante $7$. Siendo el denominador de una plaza sugiere tratando de encontrar funciones $f(x)$, $g(x)$ tal que $$\frac{d}{dx}\left[\frac{f(x)}{g(x)}\right] = \frac{f'(x)g(x) - f(x)g'(x)}{g(x)^2} = \frac{xe^{2x}}{(1+2x)^2}.$$ This in turn suggests trying $g(x) = 1+2x$, so that the numerator becomes $$(1+2x)f'(x)- 2f(x) = xe^{2x}.$$ If $f(x) = h(x) e^{2x}$ for some polynomial $h$, then $f'(x) = h'(x)e^{2x} + 2h(x) e^{2x} = (h'(x)+2h(x))e^{2x}$, hence $$xe^{2x} = (4xh(x) + (1+2x)h'(x))e^{2x}.$$ This is easily satisfied with the choice $h(x) = 1/4$, so $f(x) = e^{2x}/4$ and an antiderivative is $$7 \frac{f(x)}{g(x)} + C = \frac{7e^{2x}}{4(1+2x)} + C.$$ por supuesto, este método no siempre funciona, pero es un enfoque interesante.

1voto

Farkhod Gaziev Puntos 6

$$\frac{d(e^{2x}f(x))}{dx}=e^{2x}f'(x)+2e^{2x}f(x)=e^{2x}[f'(x)+2f(x)]$$

Si elegimos $\displaystyle f'(x)=\frac{2A}{(1+2x)^2}, f(x)=-\frac A{1+2x}$

$$\frac{d\left[e^{2x}\cdot\frac{-A}{1+2x}\right]}{dx}=e^{2x}\left[\frac{2A}{(1+2x)^2}-2\frac A{1+2x}\right]=2Ae^{2x}\cdot \frac{1-(1+2x)}{(1+2x)^2}= \frac{-4Ax e^{2x}}{(1+2x)^2}$$

Comparar con la integral dada para encontrar $-4A=7$

1voto

Kuba Holuj Puntos 171

d/dx(7*e^2/4*(2x+1))=7xe^2/x(1+2x)^2 =>d(7*e^2/4*(2x+1))=(7xe^2/x(1+2x)^2)dx Por lo tanto, usted obtiene la necesaria integral.

i-Ciencias.com

I-Ciencias es una comunidad de estudiantes y amantes de la ciencia en la que puedes resolver tus problemas y dudas.
Puedes consultar las preguntas de otros usuarios, hacer tus propias preguntas o resolver las de los demás.

Powered by:

X