\newcommand{\bbx}[1]{\,\bbox[15px,border:1px groove armada]{\displaystyle{#1}}\,}
\newcommand{\llaves}[1]{\left\lbrace\,{#1}\,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack}
\newcommand{\dd}{\mathrm{d}}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,}
\newcommand{\ic}{\mathrm{i}}
\newcommand{\mc}[1]{\mathcal{#1}}
\newcommand{\mrm}[1]{\mathrm{#1}}
\newcommand{\pars}[1]{\left(\,{#1}\,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\parcial #3^{#1}}}
\newcommand{\raíz}[2][]{\,\sqrt[#1]{\,{#2}\,}\,}
\newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}}
\newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}
\begin{align}
&\bbox[10px,#ffd]{\ds{%
\int_{0}^{\infty}{x\,\dd x \over \pars{1 + x^{2}}\pars{1 + \expo{\pi x}}}}} =
\\[5mm] = &\
\int_{0}^{\infty}{x \over 1 + x^{2}}
\pars{{1 \over \expo{\pi x} + 1} - {1 \over \expo{\pi x} - 1}}\dd x +
\int_{0}^{\infty}{x \over 1 + x^{2}}
{1 \over \expo{\pi x} - 1}\dd x
\\[5mm] = &\
-2\int_{0}^{\infty}{x \over 1 + x^{2}}
{1 \over \expo{2\pi x} - 1}\dd x +
\int_{0}^{\infty}{x \over 1/4 + x^{2}}
{1 \over \expo{2\pi x} - 1}\dd x
\\[5mm] = &\
\int_{0}^{\infty}\pars{{x \over 1/4 + x^{2}} - {2x \over 1 + x^{2}}}
{1 \over \expo{2\pi x} - 1}\dd x
\\[5mm] = &\
-\,{1 \over 2}\bracks{-2\,\Im\int_{0}^{\infty}\pars{{2 \over 1 + x\ic} - {1 \over 1/2 + x\ic}}
{1 \over \expo{2\pi x} - 1}\dd x}
\end{align}
Con el
Abel-Plana Fórmula:
\begin{align}
&\bbox[10px,#ffd]{\ds{%
\int_{0}^{\infty}{x\,\dd x \over \pars{1 + x^{2}}\pars{1 + \expo{\pi x}}}}} =
\\[5mm] = &\
-\,{1 \over 2}\,\lim_{N \to \infty}\bracks{%
\sum_{k = 0}^{N}\pars{{2 \over k + 1} - {1 \over k + 1/2}} -
\int_{0}^{N}\pars{{2 \over x + 1} - {1 \over x + 1/2}}\,\dd x}
\label{1}\tag{1}
\end{align}
Tenga en cuenta que
\begin{equation}
\left\{\begin{array}{rclcl}
\ds{\sum_{k = 0}^{N}{2 \over k + 1}} & \ds{=} &
\ds{2\sum_{k = 0}^{\infty}\pars{{1 \over k + 1} - {1 \over k + N + 2}}} & \ds{=} &
\ds{2\pars{H_{N + 1} + \gamma}}
\\[1mm]
\ds{\sum_{k = 0}^{N}{1 \over k + 1/2}} & \ds{=} &
\ds{\sum_{k = 0}^{\infty}\pars{{1 \over k + 1/2} - {1 \over k + N + 3/2}}} & \ds{=} &
\ds{H_{N + 1/2} + \gamma + 2\ln\pars{2}}
\end{array}\right.
\label{2}\etiqueta{2}
\end{equation}
donde \ds{H_{z}} es un Número Armónico, \ds{\gamma} es la
De Euler-Mascheroni Constantey
\begin{equation}
\int_{0}^{N}\pars{{2 \over x + 1} - {1 \over x + 1/2}}\,\dd x =
2\ln\pars{N + 1} - \ln\pars{N + {1 \over 2}} - \ln\pars{2}
\label{3}\tag{3}
\end{equation}
Con \eqref{1}, \eqref{2} y \eqref{3}:
\bbx{\int_{0}^{\infty}{x\,\dd x \\pars{1 + x^{2}}\pars{1 + \expo{\pi x}}} =
{1 \over 2}\bracks{\ln\pars{2} - \gamma}} \approx 0.0580
donde hemos utilizado la \ds{H_{z}} comportamiento asintóticocomo
\ds{\verts{z} \to \infty}.