$ f(x,y) = \begin{cases} \dfrac{x^3+y^3}{x^2+y^2} &\quad\text{if} [x,y] \neq [0,0]\\[2ex] 0 &\quad\text{if}[x,y] = [0,0]\\ \end{cases} $
El único punto que podría ser discontinua en es [0,0]
. ¿Cómo puedo encontrar el límite de la función para $(x,y) \rightarrow (0,0)$? $ \lim_{(x,y) \rightarrow (0,0)} \frac{x^3+y^3}{x^2+y^2} $ parece bastante difícil de analizar.